

[image: _images/iota.py.svg]
 [https://travis-ci.org/iotaledger/iota.py][image: _images/8739dde0257bef8ca63aee12440e384e20c21f62.svg]
 [http://pyota.readthedocs.io/en/latest/?badge=latest]
PyOTA

This is the official Python library for the IOTA Core.

It implements both the official API [https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference], as well as newly-proposed functionality
(such as signing, bundles, utilities and conversion).

Join the Discussion

If you want to get involved in the community, need help with getting setup,
have any issues related with the library or just want to discuss Blockchain,
Distributed Ledgers and IoT with other people, feel free to join our Discord [https://discord.iota.org/].

If you encounter any issues while using PyOTA, please report them using the
PyOTA Bug Tracker [https://github.com/iotaledger/iota.py/issues].

Dependencies

PyOTA is compatible with Python 3.7, 3.6, 3.5 and 2.7

Installation

To install the latest version:

pip install pyota

Optional C Extension

PyOTA has an optional C extension that improves the performance of its
cryptography features significantly (speedups of 60x are common!).

To install this extension, use the following command:

pip install pyota[ccurl]

Optional Local Pow

To perform proof-of-work locally without relying on a node,
you can install an extension module called PyOTA-PoW [https://pypi.org/project/PyOTA-PoW/] .

Specifiy the local_pow=True argument when creating an
api instance, that will redirect all attach_to_tangle
API calls to an interface function in the pow package.

To install this extension, use the following command:

pip install pyota[pow]

Alternativley you can take a look on the repository
Ccurl.interface.py [https://github.com/iotaledger/ccurl.interface.py] to install Pyota-PoW.
Follow the steps depicted in the repo’s README file.

Installing from Source

	Create virtualenv [https://realpython.com/blog/python/python-virtual-environments-a-primer/] (recommended, but not required).

	git clone https://github.com/iotaledger/iota.py.git

	pip install -e .

Running Unit Tests

To run unit tests after installing from source:

python setup.py test

PyOTA is also compatible with tox [https://tox.readthedocs.io/], which will run the unit tests in different
virtual environments (one for each supported version of Python).

To run the unit tests, it is recommended that you use the -p argument.
This speeds up the tests by running them in parallel.

Install PyOTA with the test-runner extra to set up the necessary
dependencies, and then you can run the tests with the tox command:

pip install -e .[test-runner]
tox -v -p all

Documentation

PyOTA’s documentation is available on ReadTheDocs [https://pyota.readthedocs.io/].

If you are installing from source (see above), you
can also build the documentation locally:

	Install extra dependencies (you only have to do this once):

pip install .[docs-builder]

Tip

To install the CCurl extension and the documentation builder tools
together, use the following command:

pip install .[ccurl,docs-builder]

	Switch to the docs directory:

cd docs

	Build the documentation:

make html

Installation

PyOTA is compatible with Python 3.7, 3.6, 3.5 and 2.7.

Install PyOTA using pip:

pip install pyota[ccurl,pow]

Note

The [ccurl] extra installs the optional PyOTA-CCurl extension [https://pypi.python.org/pypi/PyOTA-CCurl].

This extension boosts the performance of certain crypto operations
significantly (speedups of 60x are common).

Note

The [pow] extra installs the optional PyOTA-PoW extension [https://pypi.org/project/PyOTA-PoW/].

This extension makes it possible to perform proof-of-work
(api call attach_to_tangle) locally, without relying on an iota node.
Use the local_pow parameter at api instantiation:

api = Iota('https://nodes.thetangle.org:443', local_pow=True)

Or the set_local_pow method of the api class to dynamically enable/disable
the local proof-of-work feature.

Getting Started

In order to interact with the IOTA network, you will need access to a node.

You can:

	Run your own node. [http://iotasupport.com/headlessnode.shtml]

	Use a light wallet node. [http://iotasupport.com/lightwallet.shtml]

	Use the sandbox node. [http://dev.iota.org/sandbox]

Note that light wallet nodes often disable certain features like PoW for
security reasons.

Once you’ve gotten access to an IOTA node, initialize an iota.Iota
object with the URI of the node, and optional seed:

from iota import Iota

Generate a random seed.
api = Iota('http://localhost:14265')

Specify seed.
api = Iota('http://localhost:14265', 'SEED9GOES9HERE')

Test your connection to the server by sending a getNodeInfo command:

print(api.get_node_info())

You are now ready to send commands to your IOTA node!

Using the Sandbox Node

To connect to the sandbox node, you will need to inject a
SandboxAdapter into your Iota object. This will modify
your API requests so that they contain the necessary authentication metadata.

from iota.adapter.sandbox import SandboxAdapter

api = Iota(
 # To use sandbox mode, inject a ``SandboxAdapter``.
 adapter = SandboxAdapter(
 # URI of the sandbox node.
 uri = 'https://sandbox.iotatoken.com/api/v1/',

 # Access token used to authenticate requests.
 # Contact the node maintainer to get an access token.
 auth_token = 'auth token goes here',
),

 # Seed used for cryptographic functions.
 # If null, a random seed will be generated.
 seed = b'SEED9GOES9HERE',
)

Basic Concepts

Before diving into the API, it’s important to understand the fundamental
data types of IOTA.

	todo

	Link to IOTA docs

PyOTA Types

PyOTA defines a few types that will make it easy for you to model
objects like Transactions and Bundles in your own code.

TryteString

from iota import TryteString

trytes_1 = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')
trytes_2 = TryteString(b'LH9GYEMHCF9GWHZFEELHVFOEOHNEEEWHZFUD')

if trytes_1 != trytes_2:
 trytes_combined = trytes_1 + trytes_2

index = {
 trytes_1: 42,
 trytes_2: 86,
}

A TryteString is an ASCII representation of a sequence of trytes. In
many respects, it is similar to a Python bytes object (which is an
ASCII representation of a sequence of bytes).

In fact, the two objects behave very similarly; they support
concatenation, comparison, can be used as dict keys, etc.

However, unlike bytes, a TryteString can only contain uppercase
letters and the number 9 (as a regular expression: ^[A-Z9]*$).

As you go through the API documentation, you will see many references to
TryteString and its subclasses:

	Fragment: A signature or message fragment inside a transaction.
Fragments are always 2187 trytes long.

	Hash: An object identifier. Hashes are always 81 trytes long.
There are many different types of hashes:

	Address: Identifies an address on the Tangle.

	BundleHash: Identifies a bundle on the Tangle.

	TransactionHash: Identifies a transaction on the Tangle.

	Seed: A TryteString that is used for crypto functions such as
generating addresses, signing inputs, etc. Seeds can be any length,
but 81 trytes offers the best security.

	Tag: A tag used to classify a transaction. Tags are always 27
trytes long.

	TransactionTrytes: A TryteString representation of a transaction
on the Tangle. TransactionTrytes are always 2673 trytes long.

Encoding

from iota import TryteString

message_trytes = TryteString.from_unicode('Hello, IOTA!')

To encode character data into trytes, use the
TryteString.from_unicode method.

You can also convert a tryte sequence into characters using
TryteString.decode. Note that not every tryte sequence can be
converted; garbage in, garbage out!

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')
message = trytes.decode()

Note

PyOTA also supports encoding non-ASCII characters, but this functionality is
experimental and has not yet been evaluated by the IOTA
community!

Until this feature has been standardized, it is recommended that you only
use ASCII characters when generating TryteString objects from
character strings.

Transaction Types

PyOTA defines two different types used to represent transactions:

Transaction

from iota import Address, ProposedTransaction, Tag, Transaction

txn_1 =\
 Transaction.from_tryte_string(
 b'GYPRVHBEZOOFXSHQBLCYW9ICTCISLHDBNMMVYD9JJHQMPQCTIQAQTJNNNJ9IDXLRCC'
 b'OYOXYPCLR9PBEY9ORZIEPPDNTI9CQWYZUOTAVBXPSBOFEQAPFLWXSWUIUSJMSJIIIZ'
 b'WIKIRH9GCOEVZFKNXEVCUCIIWZQCQEUVRZOCMEL9AMGXJNMLJCIA9UWGRPPHCEOPTS'
 b'VPKPPPCMQXYBHMSODTWUOABPKWFFFQJHCBVYXLHEWPD9YUDFTGNCYAKQKVEZYRBQRB'
 b'XIAUX9SVEDUKGMTWQIYXRGSWYRK9SRONVGTW9YGHSZRIXWGPCCUCDRMAXBPDFVHSRY'
 b'WHGB9DQSQFQKSNICGPIPTRZINYRXQAFSWSEWIFRMSBMGTNYPRWFSOIIWWT9IDSELM9'
 b'JUOOWFNCCSHUSMGNROBFJX9JQ9XT9PKEGQYQAWAFPRVRRVQPUQBHLSNTEFCDKBWRCD'
 b'X9EYOBB9KPMTLNNQLADBDLZPRVBCKVCYQEOLARJYAGTBFR9QLPKZBOYWZQOVKCVYRG'
 b'YI9ZEFIQRKYXLJBZJDBJDJVQZCGYQMROVHNDBLGNLQODPUXFNTADDVYNZJUVPGB9LV'
 b'PJIYLAPBOEHPMRWUIAJXVQOEM9ROEYUOTNLXVVQEYRQWDTQGDLEYFIYNDPRAIXOZEB'
 b'CS9P99AZTQQLKEILEVXMSHBIDHLXKUOMMNFKPYHONKEYDCHMUNTTNRYVMMEYHPGASP'
 b'ZXASKRUPWQSHDMU9VPS99ZZ9SJJYFUJFFMFORBYDILBXCAVJDPDFHTTTIYOVGLRDYR'
 b'TKHXJORJVYRPTDH9ZCPZ9ZADXZFRSFPIQKWLBRNTWJHXTOAUOL9FVGTUMMPYGYICJD'
 b'XMOESEVDJWLMCVTJLPIEKBE9JTHDQWV9MRMEWFLPWGJFLUXI9BXPSVWCMUWLZSEWHB'
 b'DZKXOLYNOZAPOYLQVZAQMOHGTTQEUAOVKVRRGAHNGPUEKHFVPVCOYSJAWHZU9DRROH'
 b'BETBAFTATVAUGOEGCAYUXACLSSHHVYDHMDGJP9AUCLWLNTFEVGQGHQXSKEMVOVSKQE'
 b'EWHWZUDTYOBGCURRZSJZLFVQQAAYQO9TRLFFN9HTDQXBSPPJYXMNGLLBHOMNVXNOWE'
 b'IDMJVCLLDFHBDONQJCJVLBLCSMDOUQCKKCQJMGTSTHBXPXAMLMSXRIPUBMBAWBFNLH'
 b'LUJTRJLDERLZFUBUSMF999XNHLEEXEENQJNOFFPNPQ9PQICHSATPLZVMVIWLRTKYPI'
 b'XNFGYWOJSQDAXGFHKZPFLPXQEHCYEAGTIWIJEZTAVLNUMAFWGGLXMBNUQTOFCNLJTC'
 b'DMWVVZGVBSEBCPFSM99FLOIDTCLUGPSEDLOKZUAEVBLWNMODGZBWOVQT9DPFOTSKRA'
 b'BQAVOQ9RXWBMAKFYNDCZOJGTCIDMQSQQSODKDXTPFLNOKSIZEOY9HFUTLQRXQMEPGO'
 b'XQGLLPNSXAUCYPGZMNWMQWSWCKAQYKXJTWINSGPPZG9HLDLEAWUWEVCTVRCBDFOXKU'
 b'ROXH9HXXAXVPEJFRSLOGRVGYZASTEBAQNXJJROCYRTDPYFUIQJVDHAKEG9YACV9HCP'
 b'JUEUKOYFNWDXCCJBIFQKYOXGRDHVTHEQUMHO999999999999999999999999999999'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'99'
 b'999999999999RKWEEVD99A99999999A99999999NFDPEEZCWVYLKZGSLCQNOFUSENI'
 b'XRHWWTZFBXMPSQHEDFWZULBZFEOMNLRNIDQKDNNIELAOXOVMYEI9PGTKORV9IKTJZQ'
 b'UBQAWTKBKZ9NEZHBFIMCLV9TTNJNQZUIJDFPTTCTKBJRHAITVSKUCUEMD9M9SQJ999'
 b'999TKORV9IKTJZQUBQAWTKBKZ9NEZHBFIMCLV9TTNJNQZUIJDFPTTCTKBJRHAITVSK'
 b'UCUEMD9M9SQJ99'
 b'999999999999999999999999999999999'
)

Transaction is a transaction that has been loaded from the Tangle.

Generally, you will never need to create Transaction objects; the
API will build them for you, as the result of various API methods.

Each Transaction has the following attributes:

	address: Address: The address associated with this transaction.
Depending on the transaction’s value, this address may be a
sender or a recipient.

	attachment_timestamp: int: Estimated epoch time of the attachment to the tangle.

	attachment_time_lower_bound: int: The lowest possible epoch time of the attachment to the tangle.

	attachment_time_upper_bound: int: The highest possible epoch time of the attachment to the tangle.

	branch_transaction_hash: TransactionHash: An unrelated
transaction that this transaction “approves”. Refer to the Basic
Concepts section for more information.

	bundle_hash: BundleHash: The bundle hash, used to identify
transactions that are part of the same bundle. This value is
generated by taking a hash of the metadata from all transactions in
the bundle.

	current_index: int: The transaction’s position in the bundle.

	If the current_index value is 0, then this is the “tail
transaction”.

	If it is equal to last_index, then this is the “head
transaction”.

	hash: TransactionHash: The transaction hash, used to uniquely
identify the transaction on the Tangle. This value is generated by
taking a hash of the raw transaction trits.

	is_confirmed: Optional[bool]: Whether this transaction has been
“confirmed”. Refer to the Basic Concepts section for more
information.

	last_index: int: The index of the final transaction in the
bundle. This value is attached to every transaction to make it easier
to traverse and verify bundles.

	legacy_tag: Tag: A short message attached to the transaction. Deprecated, use tag instead.

	nonce: Hash: This is the product of the PoW process.

	signature_message_fragment: Fragment: Additional data attached to
the transaction:

	If value < 0, this value contains a fragment of the cryptographic
signature authorizing the spending of the IOTAs.

	If value > 0, this value is an (optional) string message attached
to the transaction.

	If value = 0, this value could be either a signature or message
fragment, depending on the previous transaction.

	tag: Tag: Used to classify the transaction. Many transactions
have empty tags (Tag(b'999999999999999999999999999')).

	timestamp: int: Unix timestamp when the transaction was created.
Note that devices can specify any timestamp when creating
transactions, so this value is not safe to use for security measures
(such as resolving double-spends).

	trunk_transaction_hash: TransactionHash: The transaction hash of
the next transaction in the bundle. If this transaction is the head
transaction, its trunk_transaction_hash will be pseudo-randomly
selected, similarly to branch_transaction_hash.

	value: int: The number of IOTAs being transferred in this
transaction:

	If this value is negative, then the address is spending IOTAs.

	If it is positive, then the address is receiving IOTAs.

	If it is zero, then this transaction is being used to carry metadata
(such as a signature fragment or a message) instead of transferring
IOTAs.

ProposedTransaction

ProposedTransaction is a transaction that was created locally and
hasn’t been broadcast yet.

txn_2 =\
 ProposedTransaction(
 address =
 Address(
 b'TESTVALUE9DONTUSEINPRODUCTION99999XE9IVG'
 b'EFNDOCQCMERGUATCIEGGOHPHGFIAQEZGNHQ9W99CH'
),

 message = TryteString.from_unicode('thx fur cheezburgers'),
 tag = Tag(b'KITTEHS'),
 value = 42,
)

This type is useful when creating new transactions to broadcast to the
Tangle. Note that creating a ProposedTransaction requires only a
small subset of the attributes needed to create a Transaction
object.

To create a ProposedTransaction, specify the following values:

	address: Address: The address associated with the transaction.
Note that each transaction references exactly one address; in order
to transfer IOTAs from one address to another, you must create at
least two transactions: One to deduct the IOTAs from the sender’s
balance, and one to add the IOTAs to the recipient’s balance.

	message: Optional[TryteString]: Optional trytes to attach to the
transaction. This could be any value (character strings, binary data,
or raw trytes), as long as it’s converted to a TryteString first.

	tag: Optional[Tag]: Optional tag to classify this transaction.
Each transaction may have exactly one tag, and the tag is limited to
27 trytes.

	value: int: The number of IOTAs being transferred in this
transaction. This value can be 0; for example, to send a message
without spending any IOTAs.

Bundle Types

As with transactions, PyOTA defines two bundle types.

Bundle

from iota import Bundle

bundle = Bundle.from_tryte_strings([
 b'GYPRVHBEZOOFXSHQBLCYW9ICTCISLHDBNMMVYD9JJHQMPQCTIQAQTJNNNJ9IDXLRCC...',
 b'OYOXYPCLR9PBEY9ORZIEPPDNTI9CQWYZUOTAVBXPSBOFEQAPFLWXSWUIUSJMSJIIIZ...',
 # etc.
])

Bundle represents a bundle of transactions published on the Tangle.
It is intended to be a read-only object, allowing you to inspect the
transactions and bundle metadata.

Each bundle has the following attributes:

	hash: BundleHash: The hash of this bundle. This value is
generated by taking a hash of the metadata from all transactions in
the bundle.

	is_confirmed: Optional[bool]: Whether the transactions in this
bundle have been confirmed. Refer to the Basic Concepts section for
more information.

	tail_transaction: Optional[Transaction]: The bundle’s tail
transaction.

	transactions: List[Transaction]: The transactions associated with
this bundle.

ProposedBundle

from iota import Address, ProposedBundle, ProposedTransaction
from iota.crypto.signing import KeyGenerator

bundle = ProposedBundle()

bundle.add_transaction(ProposedTransaction(...))
bundle.add_transaction(ProposedTransaction(...))
bundle.add_transaction(ProposedTransaction(...))

bundle.add_inputs([
 Address(
 address =
 b'TESTVALUE9DONTUSEINPRODUCTION99999HAA9UA'
 b'MHCGKEUGYFUBIARAXBFASGLCHCBEVGTBDCSAEBTBM',

 balance = 86,
 key_index = 0,
),
])

bundle.send_unspent_inputs_to(
 Address(
 b'TESTVALUE9DONTUSEINPRODUCTION99999D99HEA'
 b'M9XADCPFJDFANCIHR9OBDHTAGGE9TGCI9EO9ZCRBN'
),
)

bundle.finalize()
bundle.sign_inputs(KeyGenerator(b'SEED9GOES9HERE'))

Note

This section contains information about how PyOTA works “under the
hood”.

The prepare_transfer API method encapsulates this functionality
for you; it is not necessary to understand how ProposedBundle
works in order to use PyOTA.

ProposedBundle provides a convenient interface for creating new
bundles, listed in the order that they should be invoked:

	add_transaction: (ProposedTransaction) -> None: Adds a
transaction to the bundle. If necessary, it may split the transaction
into multiple (for example, if the transaction’s message is too long
to fit into 2187 trytes).

	add_inputs: (List[Address]) -> None: Specifies inputs that can be
used to fund transactions that spend IOTAs. The ProposedBundle
will use these to create the necessary input transactions.

	You can use the get_inputs API command to find suitable inputs.

	send_unspent_inputs_to: (Address) -> None: Specifies the address
that will receive unspent IOTAs. The ProposedBundle will use this
to create the necessary change transaction, if necessary.

	finalize: () -> None: Prepares the bundle for PoW. Once this
method is invoked, no new transactions may be added to the bundle.

	sign_inputs: (KeyGenerator) -> None: Generates the necessary
cryptographic signatures to authorize spending the inputs. You do not
need to invoke this method if the bundle does not contain any
transactions that spend IOTAs.

Once the ProposedBundle has been finalized (and inputs signed, if
necessary), invoke its as_tryte_strings method to generate the raw
trytes that should be included in an attach_to_tangle API request.

Adapters and Wrappers

The Iota class defines the API methods that are available for
interacting with the node, but it delegates the actual interaction to
another set of classes: Adapters and Wrappers.

AdapterSpec

In a few places in the PyOTA codebase, you may see references to a
meta-type called AdapterSpec.

AdapterSpec is a placeholder that means “URI or adapter instance”.

For example, the first argument of Iota.__init__ is an
AdapterSpec. This means that you can initialize an Iota object
using either a node URI, or an adapter instance:

	Node URI: Iota('http://localhost:14265')

	Adapter instance: Iota(HttpAdapter('http://localhost:14265'))

Adapters

Adapters are responsible for sending requests to the node and returning
the response.

PyOTA ships with a few adapters:

HttpAdapter

from iota import Iota
from iota.adapter import HttpAdapter

Use HTTP:
api = Iota('http://localhost:14265')
api = Iota(HttpAdapter('http://localhost:14265'))

Use HTTPS:
api = Iota('https://service.iotasupport.com:14265')
api = Iota(HttpAdapter('https://service.iotasupport.com:14265'))

Use HTTPS with basic authentication and 60 seconds timeout:
api = Iota(
 HttpAdapter(
 'https://service.iotasupport.com:14265',
 authentication=('myusername', 'mypassword'),
 timeout=60))

HttpAdapter uses the HTTP protocol to send requests to the node.

To configure an Iota instance to use HttpAdapter, specify an
http:// or https:// URI, or provide an HttpAdapter instance.

The HttpAdapter raises a BadApiResponse exception if the server
sends back an error response (due to invalid request parameters, for
example).

Debugging HTTP Requests

from logging import getLogger

from iota import Iota

api = Iota('http://localhost:14265')
api.adapter.set_logger(getLogger(__name__))

To see all HTTP requests and responses as they happen, attach a
logging.Logger instance to the adapter via its set_logger
method.

Any time the HttpAdapter sends a request or receives a response, it
will first generate a log message. Note: if the response is an error
response (e.g., due to invalid request parameters), the HttpAdapter
will log the request before raising BadApiResponse.

Note

HttpAdapter generates log messages with DEBUG level, so make sure that your logger’s level attribute is set low enough that it doesn’t filter these messages!

SandboxAdapter

from iota import Iota
from iota.adapter.sandbox import SandboxAdapter

api =\
 Iota(
 SandboxAdapter(
 uri = 'https://sandbox.iotatoken.com/api/v1/',
 auth_token = 'demo7982-be4a-4afa-830e-7859929d892c',
),
)

The SandboxAdapter is a specialized HttpAdapter that sends
authenticated requests to sandbox nodes.

Note

See Sandbox [https://dev.iota.org/sandbox/] Documentation for more information about sandbox nodes.

Sandbox nodes process certain commands asynchronously. When
SandboxAdapter determines that a request is processed
asynchronously, it will block, then poll the node periodically until it
receives a response.

The result is that SandboxAdapter abstracts away the sandbox node’s
asynchronous functionality so that your API client behaves exactly the
same as if it were connecting to a non-sandbox node.

To create a SandboxAdapter, you must provide the URI of the sandbox
node and the auth token that you received from the node maintainer. Note
that SandboxAdapter only works with http:// and https://
URIs.

You may also specify the polling interval (defaults to 15 seconds) and
the number of polls before giving up on an asynchronous job (defaults to
8 times).

Note

For parity with the other adapters, SandboxAdapter blocks until it receives a response from the node.

If you do not want SandboxAdapter to block the main thread, it is recommended that you execute it in a separate thread or process.

MockAdapter

from iota import Iota
from iota.adapter import MockAdapter

Inject a mock adapter.
api = Iota('mock://')
api = Iota(MockAdapter())

Seed responses from the node.
api.adapter.seed_response('getNodeInfo', {'message': 'Hello, world!'})
api.adapter.seed_response('getNodeInfo', {'message': 'Hello, IOTA!'})

Invoke API commands, using the adapter.
print(api.get_node_info()) # {'message': 'Hello, world!'}
print(api.get_node_info()) # {'message': 'Hello, IOTA!'}
print(api.get_node_info()) # raises BadApiResponse exception

MockAdapter is used to simulate the behavior of an adapter without
actually sending any requests to the node.

This is particularly useful in unit and functional tests where you want
to verify that your code works correctly in specific scenarios, without
having to engineer your own subtangle.

To configure an Iota instance to use MockAdapter, specify
mock:// as the node URI, or provide a MockAdapter instance.

To use MockAdapter, you must first seed the responses that you want
it to return by calling its seed_response method.

seed_response takes two parameters:

	command: Text: The name of the command. Note that this is the
camelCase version of the command name (e.g., getNodeInfo, not
get_node_info).

	response: dict: The response that the adapter will return.

You can seed multiple responses for the same command; the
MockAdapter maintains a queue for each command internally, and it
will pop a response off of the corresponding queue each time it
processes a request.

Note that you have to call seed_response once for each request you
expect it to process. If MockAdapter does not have a seeded response
for a particular command, it will raise a BadApiResponse exception
(simulates a 404 response).

Wrappers

Wrappers act like decorators for adapters; they are used to enhance or
otherwise modify the behavior of adapters.

RoutingWrapper

from iota import Iota
from iota.adapter.wrappers import RoutingWrapper

api =\
 Iota(
 # Send PoW requests to local node.
 # All other requests go to light wallet node.
 RoutingWrapper('https://service.iotasupport.com:14265')
 .add_route('attachToTangle', 'http://localhost:14265')
 .add_route('interruptAttachingToTangle', 'http://localhost:14265')
)

RoutingWrapper allows you to route API requests to different nodes
depending on the command name.

For example, you could use this wrapper to direct all PoW requests to a
local node, while sending the other requests to a light wallet node.

Note

A common use case for RoutingWrapper is to perform proof-of-work on
a specific (local) node, but let all other requests go to another node.
Take care when you use RoutingWrapper adapter and local_pow
parameter together in an API instance, because the behavior might not
be obvious.

local_pow tells the API to perform proof-of-work (attach_to_tangle)
without relying on an actual node. It does this by calling an extension
package PyOTA-PoW [https://pypi.org/project/PyOTA-PoW/] that does the
job. In PyOTA, this means the request doesn’t reach the adapter, it
is redirected before.
As a consequence, local_pow has precedence over the route that is
defined in RoutingWrapper.

RoutingWrapper must be initialized with a default URI/adapter. This
is the adapter that will be used for any command that doesn’t have a
route associated with it.

Once you’ve initialized the RoutingWrapper, invoke its add_route
method to specify a different adapter to use for a particular command.

add_route requires two arguments:

	command: Text: The name of the command. Note that this is the
camelCase version of the command name (e.g., getNodeInfo, not
get_node_info).

	adapter: AdapterSpec: The adapter or URI to send this request to.

Generating Addresses

In IOTA, addresses are generated deterministically from seeds. This
ensures that your account can be accessed from any location, as long as
you have the seed.

Note that this also means that anyone with access to your seed can spend
your IOTAs! Treat your seed(s) the same as you would the password for
any other financial service.

Note

PyOTA’s crytpo functionality is currently very slow; on average it takes
8-10 seconds to generate each address.

These performance issues will be fixed in a future version of the library;
please bear with us!

In the meantime, if you are using Python 3, you can install a C extension
that boosts PyOTA’s performance significantly (speedups of 60x are common!).

To install the extension, run pip install pyota[ccurl].

Important: The extension is not yet compatible with Python 2.

If you are familiar with Python 2’s C API, we’d love to hear from you!
Check the GitHub issue [https://github.com/todofixthis/pyota-ccurl/issues/4]
for more information.

PyOTA provides two methods for generating addresses:

Using the API

from iota import Iota

api = Iota('http://localhost:14265', b'SEED9GOES9HERE')

Generate 5 addresses, starting with index 0.
gna_result = api.get_new_addresses(count=5)
addresses = gna_result['addresses']

Generate 1 address, starting with index 42:
gna_result = api.get_new_addresses(index=42)
addresses = gna_result['addresses']

Find the first unused address, starting with index 86:
gna_result = api.get_new_addresses(index=86, count=None)
addresses = gna_result['addresses']

To generate addresses using the API, invoke its get_new_addresses
method, using the following parameters:

	index: int: The starting index (defaults to 0). This can be used
to skip over addresses that have already been generated.

	count: Optional[int]: The number of addresses to generate
(defaults to 1).

	If None, the API will generate addresses until it finds one that
has not been used (has no transactions associated with it on the
Tangle). It will then return the unused address and discard the rest.

	security_level: int: Determines the security level of the
generated addresses. See Security Levels
below.

get_new_addresses returns a dict with the following items:

	addresses: List[Address]: The generated address(es). Note that
this value is always a list, even if only one address was generated.

Using AddressGenerator

from iota.crypto.addresses import AddressGenerator

generator = AddressGenerator(b'SEED9GOES9HERE')

Generate a list of addresses:
addresses = generator.get_addresses(start=0, count=5)

Generate a list of addresses in reverse order:
addresses = generator.get_addresses(start=42, count=10, step=-1)

Create an iterator, advancing 5 indices each iteration.
iterator = generator.create_iterator(start=86, step=5)
for address in iterator:
 ...

If you want more control over how addresses are generated, you can use
the AddressGenerator class.

AddressGenerator can create iterators, allowing your application to
generate addresses as needed, instead of having to generate lots of
addresses up front.

You can also specify an optional step parameter, which allows you to
skip over multiple addresses between iterations… or even iterate over
addresses in reverse order!

AddressGenerator provides two methods:

	get_addresses: (int, int, int) -> List[Address]: Returns a list
of addresses. This is the same method that the get_new_addresses
API command uses internally.

	create_iterator: (int, int) -> Generator[Address]: Returns an
iterator that will create addresses endlessly. Use this if you have a
feature that needs to generate addresses “on demand”.

Security Levels

gna_result = api.get_new_addresses(security_level=3)

generator =\
 AddressGenerator(
 seed = b'SEED9GOES9HERE',
 security_level = 3,
)

If desired, you may change the number of iterations that
AddressGenerator uses internally when generating new addresses, by
specifying a different security_level when creating a new instance.

security_level should be between 1 and 3, inclusive. Values outside
this range are not supported by the IOTA protocol.

Use the following guide when deciding which security level to use:

	security_level=1: Least secure, but generates addresses the
fastest.

	security_level=2: Default; good compromise between speed and
security.

	security_level=3: Most secure; results in longer signatures in
transactions.

Core API

The Core API includes all of the core API calls that are made
available by the current IOTA Reference
Implementation [https://github.com/iotaledger/iri].

These methods are “low level” and generally do not need to be called
directly.

For the full documentation of all the Core API calls, please refer
to the official documentation [https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference].

Extended API

The Extended API includes a number of “high level” commands to perform
tasks such as sending and receiving transfers.

broadcast_and_store

Broadcasts and stores a set of transaction trytes.

Parameters

	trytes: Iterable[TransactionTrytes]: Transaction trytes.

Return

This method returns a dict with the following items:

	trytes: List[TransactionTrytes]: Transaction trytes that were
broadcast/stored. Should be the same as the value of the trytes
parameter.

find_transaction_objects

A more extensive version of the core API find_transactions that returns
transaction objects instead of hashes.

Effectively, this is find_transactions + get_trytes + converting
the trytes into transaction objects. It accepts the same parameters
as find_transactions

Find the transactions which match the specified input.
All input values are lists, for which a list of return values
(transaction hashes), in the same order, is returned for all
individual elements. Using multiple of these input fields returns the
intersection of the values.

Parameters

	bundles: Optional[Iterable[BundleHash]]: List of bundle IDs.

	addresses: Optional[Iterable[Address]]: List of addresses.

	tags: Optional[Iterable[Tag]]: List of tags.

	param: Optional[Iterable[TransactionHash]]: List of approvee
transaction IDs.

Return

This method returns a dict with the following items:

	transactions: List[Transaction]: List of Transaction objects that
match the input

get_account_data

More comprehensive version of get_transfers that returns addresses
and account balance in addition to bundles.

This function is useful in getting all the relevant information of your
account.

Parameters

	start: int: Starting key index.

	stop: Optional[int]: Stop before this index. Note that this
parameter behaves like the stop attribute in a slice object;
the stop index is not included in the result.

	If None (default), then this method will check every address
until it finds one without any transfers.

	inclusion_states: bool Whether to also fetch the inclusion states
of the transfers. This requires an additional API call to the node,
so it is disabled by default.

Return

This method returns a dict with the following items:

	addresses: List[Address]: List of generated addresses. Note that
this list may include unused addresses.

	balance: int: Total account balance. Might be 0.

	bundles: List[Bundles]: List of bundles with transactions to/from
this account.

get_bundles

Given a TransactionHash, returns the bundle(s) associated with it.

Parameters

	transaction: TransactionHash: Hash of a tail transaction.

Return

This method returns a dict with the following items:

	bundles: List[Bundle]: List of matching bundles. Note that this
value is always a list, even if only one bundle was found.

get_inputs

Gets all possible inputs of a seed and returns them with the total
balance.

This is either done deterministically (by generating all addresses until
find_transactions returns an empty result), or by providing a key
range to search.

Parameters

	start: int: Starting key index. Defaults to 0.

	stop: Optional[int]: Stop before this index.

	Note that this parameter behaves like the stop attribute in a
slice object; the stop index is not included in the result.

	If None (default), then this method will not stop until it finds
an unused address.

	threshold: Optional[int]: If set, determines the minimum
threshold for a successful result:

	As soon as this threshold is reached, iteration will stop.

	If the command runs out of addresses before the threshold is reached,
an exception is raised.

	If threshold is 0, the first address in the key range with a
non-zero balance will be returned (if it exists).

	If threshold is None (default), this method will return
all inputs in the specified key range.

Note that this method does not attempt to “optimize” the result (e.g.,
smallest number of inputs, get as close to threshold as possible,
etc.); it simply accumulates inputs in order until the threshold is met.

Return

This method returns a dict with the following items:

	inputs: List[Address]: Addresses with nonzero balances that can
be used as inputs.

	totalBalance: int: Aggregate balance of all inputs found.

get_latest_inclusion

Fetches the inclusion state for the specified transaction hashes, as of
the latest milestone that the node has processed.

Parameters

	hashes: Iterable[TransactionHash]: Iterable of transaction
hashes.

Return

This method returns a dict with the following items:

	<TransactionHash>: bool: Inclusion state for a single
transaction.

There will be one item per transaction hash in the hashes parameter.

get_new_addresses

Generates one or more new addresses from the seed.

Parameters

	index: int: Specify the index of the new address (must be >= 1).

	count: Optional[int]: Number of addresses to generate (must be >=
1).

	If None, this method will scan the Tangle to find the next
available unused address and return that.

	security_level: int: Number of iterations to use when generating
new addresses. Lower values generate addresses faster, higher values
result in more secure signatures in transactions.

Return

This method returns a dict with the following items:

	addresses: List[Address]: The generated address(es). Note that
this value is always a list, even if only one address was generated.

get_transaction_objects

Returns a list of transaction objects given a list of transaction hashes.
This is effectively calling get_trytes and converting the trytes to
transaction objects.
Similar to find_transaction_objects, but input is list of hashes.

Parameters

	hashes: List of transaction hashes that should be fetched.

Return

Returns a dict with the following items:

	transactions: List[Transaction]: List of transaction objects.

get_transfers

Returns all transfers associated with the seed.

Parameters

	start: int: Starting key index.

	stop: Optional[int]: Stop before this index.

	Note that this parameter behaves like the stop attribute in a
slice object; the stop index is not included in the result.

	If None (default), then this method will check every address
until it finds one without any transfers.

Return

This method returns a dict with the following items:

	bundles: List[Bundle]: Matching bundles, sorted by tail
transaction timestamp.

is_reattachable

This API function helps you to determine whether you should replay a
transaction or make a new one (either with the same input, or a
different one).

This method takes one or more input addresses (i.e. from spent
transactions) as input and then checks whether any transactions with a
value transferred are confirmed.

If yes, it means that this input address has already been successfully
used in a different transaction, and as such you should no longer replay
the transaction.

Parameters

	address: Iterable[Address]: List of addresses.

Return

This method returns a dict with the following items:

	reattachable: List[Bool]: Always a list, even if only one address
was queried.

prepare_transfer

Prepares transactions to be broadcast to the Tangle, by generating the
correct bundle, as well as choosing and signing the inputs (for value
transfers).

Parameters

	transfers: Iterable[ProposedTransaction]: Transaction objects to
prepare.

	inputs: Optional[Iterable[Address]]: List of addresses used to
fund the transfer. Ignored for zero-value transfers.

	If not provided, addresses will be selected automatically by scanning
the Tangle for unspent inputs.

	change_address: Optional[Address]: If inputs are provided, any
unspent amount will be sent to this address.

	If not specified, a change address will be generated automatically.

Return

This method returns a dict with the following items:

	trytes: List[TransactionTrytes]: Raw trytes for the transactions
in the bundle, ready to be provided to send_trytes.

promote_transaction

Promotes a transaction by adding spam on top of it.

	transaction: TransactionHash: Transaction hash. Must be a tail.

	depth: int: Depth at which to attach the bundle.

	min_weight_magnitude: Optional[int]: Min weight magnitude, used
by the node to calibrate Proof of Work.

	If not provided, a default value will be used.

Return

This method returns a dict with the following items:

	bundle: Bundle: The newly-published bundle.

replay_bundle

Takes a tail transaction hash as input, gets the bundle associated with
the transaction and then replays the bundle by attaching it to the
Tangle.

Parameters

	transaction: TransactionHash: Transaction hash. Must be a tail.

	depth: int: Depth at which to attach the bundle.

	min_weight_magnitude: Optional[int]: Min weight magnitude, used
by the node to calibrate Proof of Work.

	If not provided, a default value will be used.

Return

This method returns a dict with the following items:

	trytes: List[TransactionTrytes]: Raw trytes that were published
to the Tangle.

send_transfer

Prepares a set of transfers and creates the bundle, then attaches the
bundle to the Tangle, and broadcasts and stores the transactions.

Parameters

	depth: int: Depth at which to attach the bundle.

	transfers: Iterable[ProposedTransaction]: Transaction objects to
prepare.

	inputs: Optional[Iterable[Address]]: List of addresses used to
fund the transfer. Ignored for zero-value transfers.

	If not provided, addresses will be selected automatically by scanning
the Tangle for unspent inputs.

	change_address: Optional[Address]: If inputs are provided, any
unspent amount will be sent to this address.

	If not specified, a change address will be generated automatically.

	min_weight_magnitude: Optional[int]: Min weight magnitude, used
by the node to calibrate Proof of Work.

	If not provided, a default value will be used.

Return

This method returns a dict with the following items:

	bundle: Bundle: The newly-published bundle.

send_trytes

Attaches transaction trytes to the Tangle, then broadcasts and stores
them.

Parameters

	trytes: Iterable[TransactionTrytes]: Transaction trytes to
publish.

	depth: int: Depth at which to attach the bundle.

	min_weight_magnitude: Optional[int]: Min weight magnitude, used
by the node to calibrate Proof of Work.

	If not provided, a default value will be used.

Return

This method returns a dict with the following items:

	trytes: List[TransactionTrytes]: Raw trytes that were published
to the Tangle.

Multisignature

Multisignature transactions are transactions which require multiple signatures before execution. In simplest example it means that, if there is token wallet which require 5 signatures from different parties, all 5 parties must sign spent transaction, before it will be processed.

It is standard functionality in blockchain systems and it is also implemented in IOTA

Note

You can read more about IOTA multisignature on the wiki [https://github.com/iotaledger/wiki/blob/master/multisigs.md].

Generating multisignature address

In order to use multisignature functionality, a special multisignature address must be created. It is done by adding each key digest in agreed order into digests list. At the end, last participant is converting digests list (Curl state trits) into multisignature address.

Note

Each multisignature addresses participant has to create its own digest locally. Then, when it is created it can be safely shared with other participants, in order to build list of digests which then will be converted into multisignature address.

Created digests should be shared with each multisignature participant, so each one of them could regenerate address and ensure it is OK.

Here is the example where digest is created:

Create digest 3 of 3.
api_3 =\
 MultisigIota(
 adapter = 'http://localhost:14265',

 seed =
 Seed(
 b'TESTVALUE9DONTUSEINPRODUCTION99999JYFRTI'
 b'WMKVVBAIEIYZDWLUVOYTZBKPKLLUMPDF9PPFLO9KT',
),
)

gd_result = api_3.get_digests(index=8, count=1, security_level=2)

digest_3 = gd_result['digests'][0] # type: Digest

And here is example where digests are converted into multisignature address:

cma_result =\
 api_1.create_multisig_address(digests=[digest_1,
 digest_2,
 digest_3])

For consistency, every API command returns a dict, even if it only
has a single value.
multisig_address = cma_result['address'] # type: MultisigAddress

Note

As you can see in above example, multisignature addresses is created from list of digests, and in this case order is important. The same order need to be used in signing transfer.

Prepare transfer

Note

Since spending tokens from the same address more than once is insecure, remainder should be transferred to other address. So, this address should be created before as next to be used multisignature address.

First signer for multisignature wallet is defining address where tokens should be transferred and next wallet address for reminder:

pmt_result =\
 api_1.prepare_multisig_transfer(
 # These are the transactions that will spend the IOTAs.
 # You can divide up the IOTAs to send to multiple addresses if you
 # want, but to keep this example focused, we will only include a
 # single spend transaction.
 transfers = [
 ProposedTransaction(
 address =
 Address(
 b'TESTVALUE9DONTUSEINPRODUCTION99999NDGYBC'
 b'QZJFGGWZ9GBQFKDOLWMVILARZRHJMSYFZETZTHTZR',
),

 value = 42,

 # If you'd like, you may include an optional tag and/or
 # message.
 tag = Tag(b'KITTEHS'),
 message = TryteString.from_unicode('thanx fur cheezburgers'),
),
],

 # Specify our multisig address as the input for the spend
 # transaction(s).
 # Note that PyOTA currently only allows one multisig input per
 # bundle (although the protocol does not impose a limit).
 multisig_input = multisig_address,

 # If there will be change from this transaction, you MUST specify
 # the change address! Unlike regular transfers, multisig transfers
 # will NOT automatically generate a change address; that wouldn't
 # be fair to the other participants!
 change_address = None,
)

prepared_trytes = pmt_result['trytes'] # type: List[TransactionTrytes]

Sign the inputs

When trytes are prepared, round of signing must be performed. Order of signing must be the same as in generate multisignature addresses procedure (as described above).

Note

In example below, all signing is done on one local machine. In real case, each participant sign bundle locally and then passes it to next participant in previously defined order

index, count and security_lavel parameters for each private key should be the same as used in get_digests function in previous steps.

bundle = Bundle.from_tryte_strings(prepared_trytes)

gpk_result = api_1.get_private_keys(index=0, count=1, security_level=3)
private_key_1 = gpk_result['keys'][0] # type: PrivateKey
private_key_1.sign_input_transactions(bundle, 1)

gpk_result = api_2.get_private_keys(index=42, count=1, security_level=3)
private_key_2 = gpk_result['keys'][0] # type: PrivateKey
private_key_2.sign_input_transactions(bundle, 4)

gpk_result = api_3.get_private_keys(index=8, count=1, security_level=2)
private_key_3 = gpk_result['keys'][0] # type: PrivateKey
private_key_3.sign_input_transactions(bundle, 7)

signed_trytes = bundle.as_tryte_strings()

Note

After creation, bundle can be optionally validated:

validator = BundleValidator(bundle)
if not validator.is_valid():
 raise ValueError(
 'Bundle failed validation:\n{errors}'.format(
 errors = '\n'.join((' - ' + e) for e in validator.errors),
),
)

Broadcast the bundle

When bundle is created it can be broadcasted in standard way:

api_1.send_trytes(trytes=signed_trytes, depth=3)

Remarks

Full code example [https://github.com/iotaledger/iota.py/blob/develop/examples/multisig.py].

Note

How M-of-N works

One of the key differences between IOTA multi-signatures is that M-of-N (e.g. 3 of 5) works differently. What this means is that in order to successfully spend inputs, all of the co-signers have to sign the transaction. As such, in order to enable M-of-N we have to make use of a simple trick: sharing of private keys.

This concept is best explained with a concrete example:

Lets say that we have a multi-signature between 3 parties: Alice, Bob and Carol. Each has their own private key, and they generated a new multi-signature address in the aforementioned order. Currently, this is a 3 of 3 multisig. This means that all 3 participants (Alice, Bob and Carol) need to sign the inputs with their private keys in order to successfully spend them.

In order to enable a 2 of 3 multisig, the cosigners need to share their private keys with the other parties in such a way that no single party can sign inputs alone, but that still enables an M-of-N multsig. In our example, the sharing of the private keys would look as follows:

Alice -> Bob

Bob -> Carol

Carol -> Alice

Now, each participant holds two private keys that he/she can use to collude with another party to successfully sign the inputs and make a transaction. But no single party holds enough keys (3 of 3) to be able to independently make the transaction.

Important

There are some general rules (repeated once again for convenience) which should be followed while working with multisignature addresses (and in general with IOTA):

Signing order is important

When creating a multi-signature address and when signing a transaction for that address, it is important to follow the exact order that was used during the initial creation. If we have a multi-signature address that was signed in the following order: Alice -> Bob -> Carol. You will not be able to spend these inputs if you provide the signatures in a different order (e.g. Bob -> Alice -> Carol). As such, keep the signing order in mind.

Never re-use keys

Probably the most important rule to keep in mind: absolutely never re-use private keys. IOTA uses one-time Winternitz signatures, which means that if you re-use private keys you significantly decrease the security of your private keys, up to the point where signing of another transaction can be done on a conventional computer within few days. Therefore, when generating a new multi-signature with your co-signers, always increase the private key index counter and only use a single private key once. Don’t use it for any other multi-signatures and don’t use it for any personal transactions.

Never share your private keys

Under no circumstances - other than wanting to reduce the requirements for a multi-signature (see section How M-of-N works) - should you share your private keys. Sharing your private keys with others means that they can sign your part of the multi-signature successfully.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 PyOTA

_static/up.png

_static/up-pressed.png

