
PyOTA Documentation

Phoenix Zerin

Jun 04, 2020

CONTENTS

1 Getting Started 3

2 Basic Concepts 5

3 PyOTA Types 9

4 Adapters and Wrappers 37

5 PyOTA API Classes 45

6 Core API Methods 49

7 Extended API Methods 67

8 Generating Addresses 91

9 Creating transfers 97

10 Multisignature 103

11 Advanced: PyOTA Commands 117

12 Tutorials 123

13 PyOTA 149

14 Dependencies 151

15 Install PyOTA 153

16 Documentation 155

Python Module Index 157

Index 159

i

ii

PyOTA Documentation

PyOTA is compatible with Python 3.7 and 3.6.

Install PyOTA using pip:

pip install pyota[ccurl,pow]

Note: The [ccurl] extra installs the optional PyOTA-CCurl extension.

This extension boosts the performance of certain crypto operations significantly (speedups of 60x are common).

Note: The [pow] extra installs the optional PyOTA-PoW extension.

This extension makes it possible to perform proof-of-work (api call attach_to_tangle) locally, without relying
on an iota node. Use the local_pow parameter at api instantiation:

api = Iota('https://nodes.thetangle.org:443', local_pow=True)

Or the set_local_pow() method of the api class to dynamically enable/disable the local proof-of-work feature.

CONTENTS 1

https://pypi.python.org/pypi/PyOTA-CCurl
https://pypi.org/project/PyOTA-PoW/

PyOTA Documentation

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

In order to interact with the IOTA network, you will need access to a node.

You can:

• Run your own node.

• Use a light wallet node.

Note that light wallet nodes often disable certain features like PoW for security reasons.

Once you’ve gotten access to an IOTA node, initialize an iota.Iota object with the URI of the node, and optional
seed:

from iota import Iota

Generate a random seed.
api = Iota('http://localhost:14265')

Specify seed.
api = Iota('http://localhost:14265', 'SEED9GOES9HERE')

Test your connection to the server by sending a getNodeInfo command:

print(api.get_node_info())

You are now ready to send commands to your IOTA node!

3

http://iotasupport.com/headlessnode.shtml
http://iotasupport.com/lightwallet.shtml

PyOTA Documentation

4 Chapter 1. Getting Started

CHAPTER

TWO

BASIC CONCEPTS

Before diving into the API, it’s important to understand the fundamental data types of IOTA.

The official IOTA documentation site gives a good and in-depth explanation of the concepts used in IOTA. PyOTA
documentation will try to give references to the official site wherever possible.

2.1 Ternary

IOTA uses the ternary numerical system to represent data. The smallest unit of information is a trit, that can have a
value of -1, 0 or 1 in a balanced ternary system. A combination of 3 trits equals one tryte, therefore a tryte
can have 3 * 3 * 3 = 27 different values.

To represent a tryte, IOTA encodes these 27 values into characters based on the tryte alphabet.

In PyOTA, trits are represented as a sequence of numerical values (List[int]) while trytes have their own class
called TryteString.

2.2 IOTA token

The IOTA token is a unit of value that can be transferred over an IOTA network through transfer bundles.

The IOTA token was launched on the Mainnet in June 2017. At this point, the nodes in the network were hard-coded
with a total supply of 2,779,530,283 277,761. This large supply allows each of the billions of devices, which are
expected to be a part of the Internet of Things, to have its own wallet and transact micropayments with other devices.

2.3 Seed

Seed in IOTA is your unique password. It is the digital key that unlocks your safe that holds your tokens, or proves the
ownership of messages.

Seeds in PyOTA are always 81 trytes long and may only contain characters from the tryte alphabet.

Warning: Treat your seed(s) the same as you would the password for any other financial service. Never share
your seed with anyone, and never use online generators to create a seed. The library can help you to create your
own locally and it does not require internet connection: iota.crypto.Seed.random().

For PyOTA-specific implementation details on seeds, see crypto.Seed.

5

https://docs.iota.org/docs/getting-started/0.1/introduction/overview
https://docs.iota.org/docs/getting-started/0.1/introduction/ternary
https://docs.iota.org/docs/getting-started/0.1/introduction/ternary#tryte-encoding
https://docs.iota.org/docs/getting-started/0.1/clients/token
https://docs.iota.org/docs/getting-started/0.1/clients/token#units-of-iota-tokens
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#transfer-bundles
https://docs.iota.org/docs/getting-started/0.1/clients/seeds
https://docs.iota.org/docs/getting-started/0.1/introduction/ternary#tryte-encoding

PyOTA Documentation

2.4 Address

To send or receive any transaction (let them be zero-value or value transacitons) in IOTA, you will need to specify an
address. An address is like a physical mailbox on your entrance door: anyone can drop things in your mailbox (send
you messages or tokens), but only you can empty it (withdraw tokens).

Warning: Addresses should not be re-used once they are spent from. You can receive as many transactions to
an address as you wish, but only spend from that address once.

Addresses are generated from your seed through cryptographic functions. There are 957 different addresses that one
might generate from a seed, which is quite a lot. Given your seed, the index and security level parameters
specify which address will be generated from it. The process is deterministic, meaning that same input paramteres
always generate the same address.

Addresses are 81 trytes long and may contain extra 9 trytes for checksum. The checksum may be used to verify that
an address is in fact a valid IOTA address.

For-PyOTA specific implementation details on addresses, see Address.

2.5 Transaction

A transaction is a single transfer instruction that can either withdraw IOTA tokens from an address,
deposit them into an address, or have zero-value (contain data, a message, or a signature). If you want to
send anything to an IOTA network, you must send it to a node as a transaction.

—from the official IOTA documentation site

Transactions are always 2673 trytes long and their structure is defined by the protocol. They can be classified into
three categories:

• Input transaction: A transaction that withdraws tokens from an address.

• Output transaction: A transaction that deposits tokens to an address.

• Zero-value transaction: A transaction that has 0 value and might carry messages or signatures.

Depending on the type of the transaction, different fields are required to be filled.

A transaction’s unique identifier in IOTA is the TransactionHash, that is generated from the trytes of the transac-
tion. If any trytes change in the transaction, the returning transaction hash would alter. This way, transaction hashes
ensure the immutability of the Tangle.

To become accepted by the network, a transaction has to be attached to the Tangle. The attachment process means that
the transaction should reference two unconfirmed transactions (tips) in the Tangle and do a small proof-of-work. This
process might be performed by a node, or by using the local proof-of-work feature of the client libraries.

For PyOTA-specific implementation details on transactions, see Transaction and ProposedTransaction.

6 Chapter 2. Basic Concepts

https://docs.iota.org/docs/getting-started/0.1/clients/addresses
https://docs.iota.org/docs/getting-started/0.1/clients/addresses#spent-addresses
https://docs.iota.org/docs/getting-started/0.1/introduction/overview
https://docs.iota.org/docs/getting-started/0.1/transactions/transactions#structure-of-a-transaction
https://docs.iota.org/docs/getting-started/0.1/transactions/transactions#input-transactions
https://docs.iota.org/docs/getting-started/0.1/transactions/transactions#output-transactions
https://docs.iota.org/docs/getting-started/0.1/transactions/transactions#zero-value-transactions
https://docs.iota.org/docs/client-libraries/0.1/introduction/overview

PyOTA Documentation

2.6 Bundle

A bundle is a group of transactions that rely on each other’s validity. For example, a transaction that
deposits IOTA tokens into an address relies on another transaction to withdraw those IOTA tokens from
another address. Therefore, those transactions must be in the same bundle.

—from the official IOTA documentation site

In other words, a bundle is collection of transactions, treated as an atomic unit when attached to the Tangle.

Note: Unlike a block in a blockchain, bundles are not first-class citizens in IOTA; only transactions get stored in the
Tangle.

Instead, bundles must be inferred by following linked transactions with the same bundle hash.

Transactions in the bundle are linked together through their trunkTransaction fields, furthermore they are in-
dexed within the bundle and contain a bundleHash field that is a unique identifier for the bundle.

Fig. 1: Structure of a bundle with four transactions. Numbers in brackets denote (currentIndex, lastIndex)
fields. Head of the bundle has index 3, while tail has index 0.

Read more about how bundles are structured.

Bundles can be classified into two categories:

• Transfer bundles: Bundles that contain input and output transactions. A bundle always has to be balanced,
meaning that input transaction values should equal to output transaction values.

• Zero-value bundles: Bundles that contain only zero-value transactions.

For PyOTA-specific implementation details on bundles, see Bundle and ProposedBundle.

Now that you are familiar with some basic IOTA concepts, it is time to explore how PyOTA implements these and how
you can work with them.

2.6. Bundle 7

https://docs.iota.org/docs/getting-started/0.1/introduction/overview
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#bundle-hash
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#transfer-bundles
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#zero-value-bundle

PyOTA Documentation

8 Chapter 2. Basic Concepts

CHAPTER

THREE

PYOTA TYPES

PyOTA defines a few types that will make it easy for you to model objects like Transactions and Bundles in your own
code.

Since everything in IOTA is represented as a sequence of trits and trytes, let us take a look on how you can
work with them in PyOTA.

3.1 TryteString

class iota.TryteString(trytes: Union[AnyStr, bytearray, TryteString], pad: Optional[int] = None)
A string representation of a sequence of trytes.

A TryteString is an ASCII representation of a sequence of trytes. In many respects, it is similar to a Python
bytes object (which is an ASCII representation of a sequence of bytes).

In fact, the two objects behave very similarly; they support concatenation, comparison, can be used as dict keys,
etc.

However, unlike bytes, a TryteString can only contain uppercase letters and the number 9 (as a regular
expression: ^[A-Z9]*$).

Important: A TryteString does not represent a numeric value!

Parameters

• trytes (TrytesCompatible) – Byte string or bytearray.

• pad (Optional[int]) – Ensure at least this many trytes.

If there are too few, null trytes will be appended to the TryteString.

Note: If the TryteString is too long, it will not be truncated!

Example usage:

from iota import TryteString

Create a TryteString object from bytes.
trytes_1 = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

Ensure the created object is 81 trytes long by padding it with zeros.

(continues on next page)

9

PyOTA Documentation

(continued from previous page)

The value zero is represented with character '9' in trytes.
trytes_1 = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA', pad=81)

Create a TryteString object from text type.
Note that this will throw error if text contains unsupported characters.
trytes_2 = TryteString('LH9GYEMHCF9GWHZFEELHVFOEOHNEEEWHZFUD')

Comparison and concatenation:
if trytes_1 != trytes_2:

trytes_combined = trytes_1 + trytes_2

As dictionary keys:
index = {

trytes_1: 42,
trytes_2: 86,

}

As you go through the API documentation, you will see many references to TryteString and its subclasses:

• Fragment: A signature or message fragment inside a transaction. Fragments are always 2187 trytes long.

• Hash: An object identifier. Hashes are always 81 trytes long. There are many different types of hashes:

• Address: Identifies an address on the Tangle.

• BundleHash: Identifies a bundle on the Tangle.

• TransactionHash: Identifies a transaction on the Tangle.

• Seed: A TryteString that is used for crypto functions such as generating addresses, signing inputs, etc. Seeds
can be any length, but 81 trytes offers the best security.

• Tag: A tag used to classify a transaction. Tags are always 27 trytes long.

• TransactionTrytes: A TryteString representation of a transaction on the Tangle.
TransactionTrytes are always 2673 trytes long.

Let’s explore the capabilities of the TryteString base class.

3.1.1 Encoding

You may use classmethods to create a TryteString from bytes, unicode string or from a list of trits.

from_bytes

classmethod TryteString.from_bytes(bytes_: Union[bytes, bytearray], codec: str =
'trytes_ascii', *args: Any, **kwargs: Any)→ T

Creates a TryteString from a sequence of bytes.

Parameters

• bytes_ (Union[bytes,bytearray]) – Source bytes. ASCII representation of a se-
quence of bytes. Note that only tryte alphabet supported!

• codec (str) – Reserved for future use. Currently supports only the ‘trytes_ascii’ codec.
See https://github.com/iotaledger/iota.py/issues/62 for more information.

• args – Additional positional arguments to pass to the initializer.

• kwargs – Additional keyword arguments to pass to the initializer.

10 Chapter 3. PyOTA Types

https://github.com/iotaledger/iota.py/issues/62

PyOTA Documentation

Returns TryteString object.

Example usage:

from iota import TryteString
message_trytes = TryteString.from_bytes(b'HELLO999IOTA')

from_unicode

classmethod TryteString.from_unicode(string: str, *args: Any, **kwargs: Any)→ T
Creates a TryteString from a Unicode string.

Parameters

• string (str) – Source Unicode string.

• args – Additional positional arguments to pass to the initializer.

• kwargs – Additional keyword arguments to pass to the initializer.

Returns TryteString object.

Example usage:

from iota import TryteString
message_trytes = TryteString.from_unicode('Hello, IOTA!')

Note: PyOTA also supports encoding non-ASCII characters, but this functionality is experimental and has not yet
been evaluated by the IOTA community!

Until this feature has been standardized, it is recommended that you only use ASCII characters when generating
TryteString objects from character strings.

from_trits

classmethod TryteString.from_trits(trits: Iterable[int], *args: Any, **kwargs: Any)→ T
Creates a TryteString from a sequence of trits.

Parameters

• trits (Iterable[int]) – Iterable of trit values (-1, 0, 1).

• args – Additional positional arguments to pass to the initializer.

• kwargs – Additional keyword arguments to pass to the initializer.

Returns TryteString object.

Example usage:

from iota import TryteString
message_trytes = TryteString.from_trits(

[1, 0, -1, -1, 1, 0, 1, -1, 0, -1, 1, 0, 0, 1, 0, 0, 1, 0, -1, 1, 1, -1, 1, 0]
)

References:

• int_from_trits()

3.1. TryteString 11

PyOTA Documentation

• as_trits()

from_trytes

classmethod TryteString.from_trytes(trytes: Iterable[Iterable[int]], *args: Any, **kwargs:
Any)→ T

Creates a TryteString from a sequence of trytes.

Parameters

• trytes (Iterable[Iterable[int]]) – Iterable of tryte values.

In this context, a tryte is defined as a list containing 3 trits.

• args – Additional positional arguments to pass to the initializer.

• kwargs – Additional keyword arguments to pass to the initializer.

Returns TryteString object.

Example usage:

from iota import TryteString
message_trytes = TryteString.from_trytes(

[
[1, 0, -1],
[-1, 1, 0],
[1, -1, 0],
[-1, 1, 0],
[0, 1, 0],
[0, 1, 0],
[-1, 1, 1],
[-1, 1, 0],

]
)

References:

• as_trytes()

Additionally, you can encode a TryteString into a lower-level primitive (usually bytes). This might be useful
when the TryteString contains ASCII encoded characters but you need it as bytes. See the example below:

encode

TryteString.encode(errors: str = 'strict', codec: str = 'trytes_ascii')→ bytes
Encodes the TryteString into a lower-level primitive (usually bytes).

Parameters

• errors (str) – How to handle trytes that can’t be converted:

’strict’ raise an exception (recommended).

’replace’ replace with ‘?’.

’ignore’ omit the tryte from the result.

• codec (str) – Reserved for future use.

See https://github.com/iotaledger/iota.py/issues/62 for more information.

12 Chapter 3. PyOTA Types

https://github.com/iotaledger/iota.py/issues/62

PyOTA Documentation

Raises

• iota.codecs.TrytesDecodeError if the trytes cannot be decoded into bytes.

Returns Python bytes object.

Example usage:

from iota import TryteString

Message payload as unicode string
message = 'Hello, iota!'

Create TryteString
message_trytes = TryteString.from_unicode(message)

Encode TryteString into bytes
encoded_message_bytes = message_trytes.encode()

This will be b'Hello, iota'
print(encoded_message_bytes)

Get the original message
decoded = encoded_message_bytes.decode()

print(decoded == message)

3.1.2 Decoding

You can also convert a tryte sequence into characters using TryteString.decode(). Note that not every tryte
sequence can be converted; garbage in, garbage out!

decode

TryteString.decode(errors: str = 'strict', strip_padding: bool = True)→ str
Decodes the TryteString into a higher-level abstraction (usually Unicode characters).

Parameters

• errors (str) – How to handle trytes that can’t be converted, or bytes that can’t be decoded
using UTF-8:

’strict’ raise an exception (recommended).

’replace’ replace with a placeholder character.

’ignore’ omit the invalid tryte/byte sequence.

• strip_padding (bool) – Whether to strip trailing null trytes before converting.

Raises

• iota.codecs.TrytesDecodeError if the trytes cannot be decoded into bytes.

• UnicodeDecodeError if the resulting bytes cannot be decoded using UTF-8.

Returns Unicode string object.

Example usage:

3.1. TryteString 13

PyOTA Documentation

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

message = trytes.decode()

as_json_compatible

TryteString.as_json_compatible()→ str
Returns a JSON-compatible representation of the object.

References:

• iota.json.JsonEncoder.

Returns JSON-compatible representation of the object (string).

Example usage:

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

json_payload = trytes.as_json_compatible()

as_integers

TryteString.as_integers()→ List[int]
Converts the TryteString into a sequence of integers.

Each integer is a value between -13 and 13.

See the tryte alphabet for more info.

Returns List[int]

Example usage:

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

tryte_ints = trytes.as_integers()

as_trytes

TryteString.as_trytes()→ List[List[int]]
Converts the TryteString into a sequence of trytes.

Each tryte is represented as a list with 3 trit values.

See as_trits() for more info.

14 Chapter 3. PyOTA Types

https://docs.iota.org/docs/getting-started/0.1/introduction/ternary

PyOTA Documentation

Important: TryteString is not a numeric type, so the result of this method should not be interpreted as an
integer!

Returns List[List[int]]

Example usage:

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

tryte_list = trytes.as_trytes()

as_trits

TryteString.as_trits()→ List[int]
Converts the TryteString into a sequence of trit values.

A trit may have value 1, 0, or -1.

References:

• https://en.wikipedia.org/wiki/Balanced_ternary

Important: TryteString is not a numeric type, so the result of this method should not be interpreted as an
integer!

Returns List[int]

Example usage:

from iota import TryteString

trytes = TryteString(b'RBTC9D9DCDQAEASBYBCCKBFA')

trits = trytes.as_trits()

3.1.3 Generation

random

classmethod TryteString.random(length: Optional[int] = None)→ T
Generates a random sequence of trytes.

Parameters length (Optional[int]) – Number of trytes to generate.

Returns TryteString object.

Raises TypeError –

• if length is negative,

• if length is not defined, and the class doesn’t have LEN attribute.

3.1. TryteString 15

https://en.wikipedia.org/wiki/Balanced_ternary

PyOTA Documentation

3.2 Seed

class iota.Seed(trytes: Union[AnyStr, bytearray, TryteString, None] = None)
An iota.TryteString that acts as a seed for crypto functions.

Note: This class is identical to iota.TryteString, but it has a distinct type so that seeds can be identified
in Python code.

IMPORTANT: For maximum security, a seed must be EXACTLY 81 trytes!

Parameters trytes (TrytesCompatible) – Byte string or bytearray.

Raises Warning – if trytes are longer than 81 trytes in length.

References:

• https://iota.stackexchange.com/q/249

3.2.1 random

classmethod Seed.random(length: int = 81)→ iota.crypto.types.Seed
Generates a random seed using a CSPRNG.

Parameters length (int) – Length of seed, in trytes.

For maximum security, this should always be set to 81, but you can change it if you’re 110%
sure you know what you’re doing.

See https://iota.stackexchange.com/q/249 for more info.

Returns iota.Seed object.

Example usage:

from iota import Seed

my_seed = Seed.random()

print(my_seed)

3.3 Address

class iota.Address(trytes: Union[AnyStr, bytearray, TryteString], balance: Optional[int] = None,
key_index: Optional[int] = None, security_level: Optional[int] = None)

A TryteString that acts as an address, with support for generating and validating checksums.

Parameters

• trytes (TrytesCompatible) – Object to construct the address from.

• balance (Optional[int]) – Known balance of the address.

• key_index (Optional[int]) – Index of the address that was used during address
generation. Must be greater than zero.

• security_level (Optional[int]) – Security level that was used during address
generation. Might be 1, 2 or 3.

:raises ValueError: if trytes is longer than 81 trytes, unless it is exactly 90 trytes long (address + checksum).

16 Chapter 3. PyOTA Types

https://iota.stackexchange.com/q/249
https://iota.stackexchange.com/q/249

PyOTA Documentation

address: TryteString = None
Address trytes without the checksum.

balance = None
Balance owned by this address. Defaults to None; usually set via the getInputs command.

References:

• Iota.get_inputs()

• ProposedBundle.add_inputs()

key_index = None
Index of the key used to generate this address. Defaults to None; usually set via AddressGenerator.

References:

• iota.crypto.addresses.AddressGenerator

security_level = None
Number of hashes in the digest that was used to generate this address.

3.3.1 as_json_compatible

Address.as_json_compatible()→ Dict[str, Union[str, int]]
Returns a JSON-compatible representation of the Address.

Returns

dict with the following structure:

{
'trytes': str,
'balance': int,
'key_index': int,
'security_level': int,

}

Example usage:

from iota import Address

Example address only, do not use in your code!
addy = Address(

b'LVHHIXQNYKWQMGXGLFOKOCDFHPKXAUKWMSZVDRAT'
b'TICUZXFACM9DNJELJGMLMK99KDVVOOWLINVBZIGWZ'

)

print(addy.as_json_compatible())

3.3. Address 17

PyOTA Documentation

3.3.2 is_checksum_valid

Address.is_checksum_valid()→ bool
Returns whether this address has a valid checksum.

Returns bool

Example usage:

from iota import Address

Example address only, do not use in your code!
addy = Address(

b'LVHHIXQNYKWQMGXGLFOKOCDFHPKXAUKWMSZVDRAT'
b'TICUZXFACM9DNJELJGMLMK99KDVVOOWLINVBZIGWZ'

)

Should be ``False``
print(addy.is_checksum_valid())

addy.add_checksum()

Should be ``True``
print(addy.is_checksum_valid())

3.3.3 with_valid_checksum

Address.with_valid_checksum()→ iota.types.Address
Returns the address with a valid checksum attached.

Returns Address object.

Example usage:

from iota import Address

Example address only, do not use in your code!
addy = Address(

b'LVHHIXQNYKWQMGXGLFOKOCDFHPKXAUKWMSZVDRAT'
b'TICUZXFACM9DNJELJGMLMK99KDVVOOWLINVBZIGWZ'

)

addy_with_checksum = addy.with_valid_checksum()

print(addy_with_checksum)

Should be ``True``
print(addy_with_checksum.is_checksum_valid())

18 Chapter 3. PyOTA Types

PyOTA Documentation

3.3.4 add_checksum

Address.add_checksum()→ None
Adds checksum to Address object.

Returns None

Example usage:

from iota import Address

Example address only, do not use in your code!
addy = Address(

b'LVHHIXQNYKWQMGXGLFOKOCDFHPKXAUKWMSZVDRAT'
b'TICUZXFACM9DNJELJGMLMK99KDVVOOWLINVBZIGWZ'

)

Should be ``False``
print(addy.is_checksum_valid())

print(addy.checksum)

addy.add_checksum()

Should be ``True``
print(addy.is_checksum_valid())

print(addy.checksum)

3.3.5 remove_checksum

Address.remove_checksum()→ None
Removes checksum from Address object.

Returns None

Example usage:

from iota import Address

Example address only, do not use in your code!
addy = Address(

b'LVHHIXQNYKWQMGXGLFOKOCDFHPKXAUKWMSZVDRAT'
b'TICUZXFACM9DNJELJGMLMK99KDVVOOWLINVBZIGWZ'
b'AACAMCWUW' # 9 checksum trytes

)

Should be ``True``
print(addy.is_checksum_valid())

print(addy.checksum)

addy.remove_checksum()

Should be ``False``
print(addy.is_checksum_valid())

print(addy.checksum)

3.3. Address 19

PyOTA Documentation

3.4 AddressChecksum

class iota.AddressChecksum(trytes: Union[AnyStr, bytearray, TryteString])
A TryteString that acts as an address checksum.

Parameters trytes (TrytesCompatible) – Checksum trytes.

Raises ValueError – if trytes is not exactly 9 trytes in length.

LEN = 9
Length of an address checksum.

3.5 Hash

class iota.Hash(trytes: Union[AnyStr, bytearray, TryteString])
A TryteString that is exactly one hash long.

Parameters trytes (TrytesCompatible) – Object to construct the hash from.

Raises ValueError – if trytes is longer than 81 trytes.

LEN = 81
Length is always 81 trytes long.

3.6 TransactionHash

class iota.TransactionHash(trytes: Union[AnyStr, bytearray, TryteString])
An TryteString (Hash) that acts as a transaction hash.

3.7 BundleHash

class iota.BundleHash(trytes: Union[AnyStr, bytearray, TryteString])
An TryteString (Hash) that acts as a bundle hash.

3.8 TransactionTrytes

class iota.TransactionTrytes(trytes: Union[AnyStr, bytearray, TryteString])
An TryteString representation of a Transaction.

Raises ValueError – if trytes is longer than 2673 trytes in length.

LEN = 2673
Length of a transaction in trytes.

20 Chapter 3. PyOTA Types

PyOTA Documentation

3.9 Fragment

class iota.Fragment(trytes: Union[AnyStr, bytearray, TryteString])
An TryteString representation of a signature/message fragment in a transaction.

Raises ValueError – if trytes is longer than 2187 trytes in length.

LEN = 2187
Length of a fragment in trytes.

3.10 Nonce

class iota.Nonce(trytes: Union[AnyStr, bytearray, TryteString])
An TryteString that acts as a transaction nonce.

Raises ValueError – if trytes is longer than 27 trytes in length.

LEN = 27
Length of a nonce in trytes.

3.11 Tag

class iota.Tag(trytes: Union[AnyStr, bytearray, TryteString])
A TryteString that acts as a transaction tag.

Parameters trytes (TrytesCompatible) – Tag trytes.

Raises ValueError – if trytes is longer than 27 trytes in length.

LEN = 27
Length of a tag.

3.12 Transaction Types

PyOTA defines two different types used to represent transactions:

• Transaction for transactions that have already been attached to the Tangle. Generally, you will never need
to create Transaction objects; the API will build them for you, as the result of various API methods.

• ProposedTransaction for transactions that have been created locally and have not been broadcast yet.

3.12.1 Transaction

Each Transaction object has several instance attributes that you may manipulate and properties you can use to
extract their values as trytes. See the class documentation below:

3.9. Fragment 21

PyOTA Documentation

class iota.Transaction(hash_: Optional[iota.transaction.types.TransactionHash], signa-
ture_message_fragment: Optional[iota.transaction.types.Fragment],
address: iota.types.Address, value: int, timestamp: int, cur-
rent_index: Optional[int], last_index: Optional[int], bundle_hash:
Optional[iota.transaction.types.BundleHash], trunk_transaction_hash: Op-
tional[iota.transaction.types.TransactionHash], branch_transaction_hash:
Optional[iota.transaction.types.TransactionHash], tag: Op-
tional[iota.types.Tag], attachment_timestamp: Optional[int],
attachment_timestamp_lower_bound: Optional[int], attach-
ment_timestamp_upper_bound: Optional[int], nonce: Op-
tional[iota.transaction.types.Nonce], legacy_tag: Optional[iota.types.Tag]
= None)

A transaction that has been attached to the Tangle.

Parameters

• hash (Optional[TransactionHash]) – Transaction ID

• signature_message_fragment (Optional[Fragment]) – Signature or mes-
sage fragment.

• address (Address) – The address associated with this transaction.

• value (int) – Value of the transaction in iotas. Can be negative as well (spending from
address).

• timestamp (int) – Unix timestamp in seconds.

• current_index (Optional[int]) – Index of the transaction within the bundle.

• last_index (Optional[int]) – Index of head transaction in the bundle.

• bundle_hash (Optional[BundleHash]) – Bundle hash of the bundle containing the
transaction.

• trunk_transaction_hash (Optional[TransactionHash]) – Hash of trunk
transaction.

• branch_transaction_hash (Optional[TransactionHash]) – Hash of
branch transaction.

• tag (Optional[Tag]) – Optional classification tag applied to this transaction.

• attachment_timestamp (Optional[int]) – Unix timestamp in milliseconds, de-
cribes when the proof-of-work for this transaction was done.

• attachment_timestamp_lower_bound (Optional[int]) – Unix timestamp in
milliseconds, lower bound of attachment.

• attachment_timestamp_upper_bound (Optional[int]) – Unix timestamp in
milliseconds, upper bound of attachment.

• nonce (Optional[Nonce]) – Unique value used to increase security of the transaction
hash. Result of the proof-of-work aglorithm.

• legacy_tag (Optional[Tag]) – Optional classification legacy_tag applied to this
transaction.

Returns Transaction object.

address: Address = None
The address associated with this transaction.

22 Chapter 3. PyOTA Types

PyOTA Documentation

Depending on the transaction’s value, this address may be a sender or a recipient. If value is != 0, the
associated address’ balance is adjusted as a result of this transaction.

Type Address

attachment_timestamp: Optional[int] = None
Estimated epoch time of the attachment to the tangle.

Decribes when the proof-of-work for this transaction was done.

Type int, unix timestamp in milliseconds,

property attachment_timestamp_as_trytes
Returns a TryteString representation of the transaction’s attachment_timestamp.

attachment_timestamp_lower_bound: Optional[int] = None
The lowest possible epoch time of the attachment to the tangle.

Type int, unix timestamp in milliseconds.

property attachment_timestamp_lower_bound_as_trytes
Returns a TryteString representation of the transaction’s attachment_timestamp_lower_bound.

attachment_timestamp_upper_bound: Optional[int] = None
The highest possible epoch time of the attachment to the tangle.

Type int, unix timestamp in milliseconds.

property attachment_timestamp_upper_bound_as_trytes
Returns a TryteString representation of the transaction’s attachment_timestamp_upper_bound.

branch_transaction_hash: Optional[TransactionHash] = None
An unrelated transaction that this transaction “approves”.

In order to add a transaction to the Tangle, the client must perform PoW to “approve” two existing trans-
actions, called the “trunk” and “branch” transactions.

The branch transaction may be selected strategically to maximize the bundle’s chances of getting con-
firmed; otherwise it usually has no significance.

Type TransactionHash

bundle_hash: Optional[BundleHash] = None
The bundle hash, used to identify transactions that are part of the same bundle.

This value is generated by taking a hash of the metadata from all transactions in the bundle.

Type BundleHash

current_index: Optional[int] = None
The position of the transaction inside the bundle.

• If the current_index value is 0, then this is the “head transaction”.

• If it is equal to last_index, then this is the “tail transaction”.

For value transfers, the “spend” transaction is generally in the 0th position, followed by inputs, and the
“change” transaction is last.

Type int

property current_index_as_trytes
Returns a TryteString representation of the transaction’s current_index.

3.12. Transaction Types 23

PyOTA Documentation

hash: TransactionHash = None
The transaction hash, used to uniquely identify the transaction on the Tangle.

This value is generated by taking a hash of the raw transaction trits.

Type TransactionHash

is_confirmed: bool = None
Whether this transaction has been confirmed by neighbor nodes. Must be set manually via the
getInclusionStates API command.

Type Optional[bool]

References:

• Iota.get_inclusion_states()

• Iota.get_transfers()

property is_tail
Returns whether this transaction is a tail (first one in the bundle).

Because of the way the Tangle is organized, the tail transaction is generally the last one in the bundle that
gets attached, even though it occupies the first logical position inside the bundle.

last_index: Optional[int] = None
The index of the final transaction in the bundle.

This value is attached to every transaction to make it easier to traverse and verify bundles.

Type int

property last_index_as_trytes
Returns a TryteString representation of the transaction’s last_index.

property legacy_tag
Return the legacy tag of the transaction. If no legacy tag was set, returns the tag instead.

nonce: Optional[Nonce] = None
Unique value used to increase security of the transaction hash.

This is the product of the PoW process.

Type Nonce

signature_message_fragment: Optional[Fragment] = None
“Signature/Message Fragment” (note the slash):

• For inputs, this contains a fragment of the cryptographic signature, used to verify the transaction
(depending on the security level of the corresponding address, the entire signature is usually too large
to fit into a single transaction, so it is split across multiple transactions instead).

• For other transactions, this contains a fragment of the message attached to the transaction (if any). This
can be pretty much any value. Like signatures, the message may be split across multiple transactions
if it is too large to fit inside a single transaction.

Type Fragment

tag: Optional[Tag] = None
Optional classification tag applied to this transaction.

Many transactions have empty tags (Tag(b'999999999999999999999999999')).

Type Tag

24 Chapter 3. PyOTA Types

PyOTA Documentation

timestamp: int = None
Timestamp used to increase the security of the transaction hash.

Describes when the transaction was created.

Important: This value is easy to forge! Do not rely on it when resolving conflicts!

Type int, unix timestamp in seconds.

property timestamp_as_trytes
Returns a TryteString representation of the transaction’s timestamp.

trunk_transaction_hash: Optional[TransactionHash] = None
The transaction hash of the next transaction in the bundle.

In order to add a transaction to the Tangle, the client must perform PoW to “approve” two existing trans-
actions, called the “trunk” and “branch” transactions.

The trunk transaction is generally used to link transactions within a bundle.

Type TransactionHash

value: int = None
The number of iotas being transferred in this transaction:

• If this value is negative, then the address is spending iotas.

• If it is positive, then the address is receiving iotas.

• If it is zero, then this transaction is being used to carry metadata (such as a signature fragment or a
message) instead of transferring iotas.

Type int

property value_as_trytes
Returns a TryteString representation of the transaction’s value.

as_json_compatible

Transaction.as_json_compatible()→ dict
Returns a JSON-compatible representation of the object.

Returns

dict with the following structure:

{
'hash_': TransactionHash,
'signature_message_fragment': Fragment,
'address': Address,
'value': int,
'legacy_tag': Tag,
'timestamp': int,
'current_index': int,
'last_index': int,
'bundle_hash': BundleHash,
'trunk_transaction_hash': TransactionHash,
'branch_transaction_hash': TransactionHash,

(continues on next page)

3.12. Transaction Types 25

PyOTA Documentation

(continued from previous page)

'tag': Tag,
'attachment_timestamp': int,
'attachment_timestamp_lower_bound': int,
'attachment_timestamp_upper_bound': int,
'nonce': Nonce,

}

References:

• iota.json.JsonEncoder.

as_tryte_string

Transaction.as_tryte_string()→ iota.transaction.types.TransactionTrytes
Returns a TryteString representation of the transaction.

Returns TryteString object.

from_tryte_string

classmethod Transaction.from_tryte_string(trytes: Union[AnyStr, bytear-
ray, TryteString], hash_: Op-
tional[iota.transaction.types.TransactionHash]
= None)→ T

Creates a Transaction object from a sequence of trytes.

Parameters

• trytes (TrytesCompatible) – Raw trytes. Should be exactly 2673 trytes long.

• hash (Optional[TransactionHash]) – The transaction hash, if available.

If not provided, it will be computed from the transaction trytes.

Returns Transaction object.

Example usage:

from iota import Transaction

txn =\
Transaction.from_tryte_string(

b'GYPRVHBEZOOFXSHQBLCYW9ICTCISLHDBNMMVYD9JJHQMPQCTIQAQTJNNNJ9IDXLRCC'
b'OYOXYPCLR9PBEY9ORZIEPPDNTI9CQWYZUOTAVBXPSBOFEQAPFLWXSWUIUSJMSJIIIZ'
b'WIKIRH9GCOEVZFKNXEVCUCIIWZQCQEUVRZOCMEL9AMGXJNMLJCIA9UWGRPPHCEOPTS'
b'VPKPPPCMQXYBHMSODTWUOABPKWFFFQJHCBVYXLHEWPD9YUDFTGNCYAKQKVEZYRBQRB'
b'XIAUX9SVEDUKGMTWQIYXRGSWYRK9SRONVGTW9YGHSZRIXWGPCCUCDRMAXBPDFVHSRY'
b'WHGB9DQSQFQKSNICGPIPTRZINYRXQAFSWSEWIFRMSBMGTNYPRWFSOIIWWT9IDSELM9'
b'JUOOWFNCCSHUSMGNROBFJX9JQ9XT9PKEGQYQAWAFPRVRRVQPUQBHLSNTEFCDKBWRCD'
b'X9EYOBB9KPMTLNNQLADBDLZPRVBCKVCYQEOLARJYAGTBFR9QLPKZBOYWZQOVKCVYRG'
b'YI9ZEFIQRKYXLJBZJDBJDJVQZCGYQMROVHNDBLGNLQODPUXFNTADDVYNZJUVPGB9LV'
b'PJIYLAPBOEHPMRWUIAJXVQOEM9ROEYUOTNLXVVQEYRQWDTQGDLEYFIYNDPRAIXOZEB'
b'CS9P99AZTQQLKEILEVXMSHBIDHLXKUOMMNFKPYHONKEYDCHMUNTTNRYVMMEYHPGASP'
b'ZXASKRUPWQSHDMU9VPS99ZZ9SJJYFUJFFMFORBYDILBXCAVJDPDFHTTTIYOVGLRDYR'
b'TKHXJORJVYRPTDH9ZCPZ9ZADXZFRSFPIQKWLBRNTWJHXTOAUOL9FVGTUMMPYGYICJD'
b'XMOESEVDJWLMCVTJLPIEKBE9JTHDQWV9MRMEWFLPWGJFLUXI9BXPSVWCMUWLZSEWHB'
b'DZKXOLYNOZAPOYLQVZAQMOHGTTQEUAOVKVRRGAHNGPUEKHFVPVCOYSJAWHZU9DRROH'

(continues on next page)

26 Chapter 3. PyOTA Types

PyOTA Documentation

(continued from previous page)

b'BETBAFTATVAUGOEGCAYUXACLSSHHVYDHMDGJP9AUCLWLNTFEVGQGHQXSKEMVOVSKQE'
b'EWHWZUDTYOBGCURRZSJZLFVQQAAYQO9TRLFFN9HTDQXBSPPJYXMNGLLBHOMNVXNOWE'
b'IDMJVCLLDFHBDONQJCJVLBLCSMDOUQCKKCQJMGTSTHBXPXAMLMSXRIPUBMBAWBFNLH'
b'LUJTRJLDERLZFUBUSMF999XNHLEEXEENQJNOFFPNPQ9PQICHSATPLZVMVIWLRTKYPI'
b'XNFGYWOJSQDAXGFHKZPFLPXQEHCYEAGTIWIJEZTAVLNUMAFWGGLXMBNUQTOFCNLJTC'
b'DMWVVZGVBSEBCPFSM99FLOIDTCLUGPSEDLOKZUAEVBLWNMODGZBWOVQT9DPFOTSKRA'
b'BQAVOQ9RXWBMAKFYNDCZOJGTCIDMQSQQSODKDXTPFLNOKSIZEOY9HFUTLQRXQMEPGO'
b'XQGLLPNSXAUCYPGZMNWMQWSWCKAQYKXJTWINSGPPZG9HLDLEAWUWEVCTVRCBDFOXKU'
b'ROXH9HXXAXVPEJFRSLOGRVGYZASTEBAQNXJJROCYRTDPYFUIQJVDHAKEG9YACV9HCP'
b'JUEUKOYFNWDXCCJBIFQKYOXGRDHVTHEQUMHO999999999999999999999999999999'
b'99'
b'99'
b'99'
b'99'
b'99'
b'99'
b'99'
b'99'
b'99'
b'99'
b'999999999999RKWEEVD99A99999999A99999999NFDPEEZCWVYLKZGSLCQNOFUSENI'
b'XRHWWTZFBXMPSQHEDFWZULBZFEOMNLRNIDQKDNNIELAOXOVMYEI9PGTKORV9IKTJZQ'
b'UBQAWTKBKZ9NEZHBFIMCLV9TTNJNQZUIJDFPTTCTKBJRHAITVSKUCUEMD9M9SQJ999'
b'999TKORV9IKTJZQUBQAWTKBKZ9NEZHBFIMCLV9TTNJNQZUIJDFPTTCTKBJRHAITVSK'
b'UCUEMD9M9SQJ99'
b'999999999999999999999999999999999'

)

get_bundle_essence_trytes

Transaction.get_bundle_essence_trytes()→ iota.types.TryteString
Returns the values needed for calculating bundle hash. The bundle hash is the hash of the bundle essence, which
is itself the hash of the following fields of transactions in the bundle:

• address,

• value,

• legacy_tag,

• current_index,

• last_index,

• and timestamp.

The transaction’s signature_message_fragment field contains the signature generated by signing the
bundle hash with the address’s private key.

Returns TryteString object.

3.12. Transaction Types 27

PyOTA Documentation

3.12.2 ProposedTransaction

class iota.ProposedTransaction(address: iota.types.Address, value: int, tag: Op-
tional[iota.types.Tag] = None, message: Op-
tional[iota.types.TryteString] = None, timestamp: Optional[int]
= None)

A transaction that has not yet been attached to the Tangle.

Proposed transactions are created locally. Note that for creation, only a small subset of the Transaction
attributes is needed.

Provide to Iota.send_transfer() to attach to tangle and publish/store.

Note: In order to follow naming convention of other libs, you may use the name Transfer interchangeably
with ProposedTransaction. See https://github.com/iotaledger/iota.py/issues/72 for more info.

Parameters

• address (Address) – Address associated with the transaction.

• value (int) – Transaction value.

• tag (Optional[Tag]) – Optional classification tag applied to this transaction.

• message (Optional[TryteString]) – Message to be included in transaction.
Transaction.signature_or_message_fragment field of the transaction.
Should not be longer than transaction.Fragment.LEN.

• timestamp (Optional[int]) – Timestamp of transaction creation. If not supplied,
the library will generate it.

Returns iota.ProposedTransaction object.

Example usage:

txn=\
ProposedTransaction(

address =
Address(

b'TESTVALUE9DONTUSEINPRODUCTION99999XE9IVG'
b'EFNDOCQCMERGUATCIEGGOHPHGFIAQEZGNHQ9W99CH'

),
message = TryteString.from_unicode('thx fur cheezburgers'),
tag = Tag(b'KITTENS'),
value = 42,

)

28 Chapter 3. PyOTA Types

https://github.com/iotaledger/iota.py/issues/72

PyOTA Documentation

as_tryte_string

ProposedTransaction.as_tryte_string()→ iota.types.TryteString
Returns a TryteString representation of the transaction.

Returns TryteString object.

Raises RuntimeError – if the transaction doesn’t have a bundle hash field, meaning that the
bundle containing the transaction hasn’t been finalized yet.

increment_legacy_tag

ProposedTransaction.increment_legacy_tag()→ None
Increments the transaction’s legacy tag, used to fix insecure bundle hashes when finalizing a bundle.

References:

• https://github.com/iotaledger/iota.py/issues/84

3.13 Bundle Types

As with transactions, PyOTA defines two different types to represent bundles:

• Bundle for bundles that have already been broadcast to the Tangle. Generally, you will never need to create
Bundle objects; the API will build them for you, as the result of various API methods.

• ProposedBundle for bundles that have been created locally and have not been broadcast yet.

3.13.1 Bundle

class iota.Bundle(transactions: Optional[Iterable[iota.transaction.base.Transaction]] = None)
A collection of transactions, treated as an atomic unit when attached to the Tangle.

Note: unlike a block in a blockchain, bundles are not first-class citizens in IOTA; only transactions get stored in
the Tangle.

Instead, Bundles must be inferred by following linked transactions with the same bundle hash.

Parameters transactions (Optional[Iterable[Transaction]]) – Transactions in
the bundle. Note that transactions will be sorted into ascending order based on their
current_index.

Returns Bundle object.

References:

• Iota.get_transfers

property hash
Returns the hash of the bundle.

This value is determined by inspecting the bundle’s tail transaction, so in a few edge cases, it may be
incorrect.

Returns

• BundleHash object, or

• If the bundle has no transactions, this method returns None.

3.13. Bundle Types 29

https://github.com/iotaledger/iota.py/issues/84

PyOTA Documentation

property is_confirmed
Returns whether this bundle has been confirmed by neighbor nodes.

This attribute must be set manually.

Returns bool

References:

• Iota.get_transfers

property tail_transaction
Returns the tail transaction of the bundle.

Returns Transaction

transactions: List[Transaction] = None
List of Transaction objects that are in the bundle.

as_json_compatible

Bundle.as_json_compatible()→ List[dict]
Returns a JSON-compatible representation of the object.

Returns List[dict]. The dict list elements contain individual transactions as in
Transaction.as_json_compatible().

References:

• iota.json.JsonEncoder.

as_tryte_strings

Bundle.as_tryte_strings(head_to_tail: bool = False)→ List[iota.transaction.types.TransactionTrytes]
Returns TryteString representations of the transactions in this bundle.

Parameters head_to_tail (bool) – Determines the order of the transactions:

• True: head txn first, tail txn last.

• False (default): tail txn first, head txn last.

Note that the order is reversed by default, as this is the way bundles are typically broadcast to
the Tangle.

Returns List[TransactionTrytes]

from_tryte_strings

classmethod Bundle.from_tryte_strings(trytes: Iterable[iota.types.TryteString])→ B
Creates a Bundle object from a list of tryte values.

Note, that this is effectively calling Transaction.from_tryte_string() on the iterbale elements and
constructing the bundle from the created transactions.

Parameters trytes (Iterable[TryteString]) – List of raw transaction trytes.

Returns Bundle object.

Example usage:

30 Chapter 3. PyOTA Types

PyOTA Documentation

from iota import Bundle
bundle = Bundle.from_tryte_strings([

b'GYPRVHBEZOOFXSHQBLCYW9ICTCISLHDBNMMVYD9JJHQMPQCTIQAQTJNNNJ9IDXLRCC...',
b'OYOXYPCLR9PBEY9ORZIEPPDNTI9CQWYZUOTAVBXPSBOFEQAPFLWXSWUIUSJMSJIIIZ...',
etc.

])

get_messages

Bundle.get_messages(errors: str = 'drop')→ List[str]
Attempts to decipher encoded messages from the transactions in the bundle.

Parameters errors (str) – How to handle trytes that can’t be converted, or bytes that can’t be
decoded using UTF-8:

’drop’ Drop the trytes from the result.

’strict’ Raise an exception.

’replace’ Replace with a placeholder character.

’ignore’ Omit the invalid tryte/byte sequence.

Returns List[str]

group_transactions

Bundle.group_transactions()→ List[List[iota.transaction.base.Transaction]]
Groups transactions in the bundle by address.

Returns List[List[Transaction]]

3.13.2 ProposedBundle

Note: This section contains information about how PyOTA works “under the hood”.

The Iota.prepare_transfer() API method encapsulates this functionality for you; it is not necessary to un-
derstand how ProposedBundle works in order to use PyOTA.

class iota.ProposedBundle(transactions: Optional[Iterable[iota.transaction.creation.ProposedTransaction]]
= None, inputs: Optional[Iterable[iota.types.Address]] = None,
change_address: Optional[iota.types.Address] = None)

A collection of proposed transactions, to be treated as an atomic unit when attached to the Tangle.

Parameters

• transactions (Optional[Iterable[ProposedTransaction]]) – Proposed
transactions that should be put into the proposed bundle.

• inputs (Optional[Iterable[Address]]) – Addresses that hold iotas to fund out-
going transactions in the bundle. If provided, the library will create and sign withdrawing
transactions from these addresses.

See Iota.get_inputs() for more info.

3.13. Bundle Types 31

PyOTA Documentation

• change_address (Optional[Address]) – Due to the signatures scheme of IOTA,
you can only spend once from an address. Therefore the library will always deduct
the full available amount from an input address. The unused tokens will be sent to
change_address if provided, or to a newly-generated and unused address if not.

Returns ProposedBundle

property balance
Returns the bundle balance. In order for a bundle to be valid, its balance must be 0:

• A positive balance means that there aren’t enough inputs to cover the spent amount; add more inputs
using add_inputs().

• A negative balance means that there are unspent inputs; use send_unspent_inputs_to() to
send the unspent inputs to a “change” address.

Returns bool

property tag
Determines the most relevant tag for the bundle.

Returns transaction.Tag

ProposedBundle provides a convenient interface for creating new bundles, listed in the order that they should be
invoked:

add_transaction

ProposedBundle.add_transaction(transaction: iota.transaction.creation.ProposedTransaction) →
None

Adds a transaction to the bundle.

If the transaction message is too long, it will be split automatically into multiple transactions.

Parameters transaction (ProposedTransaction) – The transaction to be added.

Raises

• RuntimeError – if bundle is already finalized

• ValueError – if trying to add a spending transaction. Use add_inputs() instead.

add_inputs

ProposedBundle.add_inputs(inputs: Iterable[iota.types.Address])→ None
Specifies inputs that can be used to fund transactions that spend iotas.

The ProposedBundle will use these to create the necessary input transactions.

Note that each input may require multiple transactions, in order to hold the entire signature.

Parameters inputs (Iterable[Address]) – Addresses to use as the inputs for this bundle.

Important: Must have balance and key_index attributes! Use Iota.get_inputs()
to prepare inputs.

Raises

• RuntimeError – if bundle is already finalized.

32 Chapter 3. PyOTA Types

PyOTA Documentation

• ValueError –

– if input address has no balance.

– if input address has no key_index.

send_unspent_inputs_to

ProposedBundle.send_unspent_inputs_to(address: iota.types.Address)→ None
Specifies the address that will receive unspent iotas.

The ProposedBundle will use this to create the necessary change transaction, if necessary.

If the bundle has no unspent inputs, this method does nothing.

Parameters address (Address) – Address to send unspent inputs to.

Raises RuntimeError – if bundle is already finalized.

add_signature_or_message

ProposedBundle.add_signature_or_message(fragments: Iter-
able[iota.transaction.types.Fragment],
start_index: Optional[int] = 0)→ None

Adds signature/message fragments to transactions in the bundle starting at start_index. If a transaction already
has a fragment, it will be overwritten.

Parameters

• fragments (Iterable[Fragment]) – List of fragments to add. Use [Frag-
ment(. . .),Fragment(. . .),. . .] to create this argument. Fragment() accepts any TryteString
compatible type, or types that can be converted to TryteStrings (bytearray, unicode string,
etc.). If the payload is less than FRAGMENT_LENGTH, it will pad it with 9s.

• start_index (int) – Index of transaction in bundle from where addition shoudl start.

Raises

• RuntimeError – if bundle is already finalized.

• ValueError –

– if empty list is provided for fragments

– if wrong start_index is provided.

– if fragments is too long and does’t fit into the bundle.

• TypeError –

– if fragments is not an Iterable

– if fragments contains other types than Fragment.

3.13. Bundle Types 33

PyOTA Documentation

finalize

ProposedBundle.finalize()→ None
Finalizes the bundle, preparing it to be attached to the Tangle.

This operation includes checking if the bundle has zero balance, generating the bundle hash and updating the
transactions with it, furthermore to initialize signature/message fragment fields.

Once this method is invoked, no new transactions may be added to the bundle.

Raises

• RuntimeError – if bundle is already finalized.

• ValueError –

– if bundle has no transactions.

– if bundle has unspent inputs (there is no change_address attribute specified.)

– if inputs are insufficient to cover bundle spend.

sign_inputs

ProposedBundle.sign_inputs(key_generator: iota.crypto.signing.KeyGenerator)→ None
Sign inputs in a finalized bundle.

Generates the necessary cryptographic signatures to authorize spending the inputs.

Note: You do not need to invoke this method if the bundle does not contain any transactions that spend iotas.

Parameters key_generator (KeyGenerator) – Generator to create private keys for signing.

Raises

• RuntimeError – if bundle is not yet finalized.

• ValueError –

– if the input transaction specifies an address that doesn’t have key_index attribute de-
fined.

– if the input transaction specifies an address that doesn’t have security_level at-
tribute defined.

sign_input_at

ProposedBundle.sign_input_at(start_index: int, private_key: iota.crypto.types.PrivateKey) →
None

Signs the input at the specified index.

Parameters

• start_index (int) – The index of the first input transaction.

If necessary, the resulting signature will be split across multiple transactions auto-
matically (i.e., if an input has security_level=2, you still only need to call
sign_input_at() once).

34 Chapter 3. PyOTA Types

PyOTA Documentation

• private_key (PrivateKey) – The private key that will be used to generate the signa-
ture.

Important: Be sure that the private key was generated using the correct seed, or the
resulting signature will be invalid!

Raises RuntimeError – if bundle is not yet finalized.

as_json_compatible

ProposedBundle.as_json_compatible()→ List[dict]
Returns a JSON-compatible representation of the object.

Returns List[dict]. The dict list elements contain individual transactions as in
ProposedTransaction.as_json_compatible().

References:

• iota.json.JsonEncoder.

Example usage

from iota import Address, ProposedBundle, ProposedTransaction
from iota.crypto.signing import KeyGenerator

bundle = ProposedBundle()

bundle.add_transaction(ProposedTransaction(...))
bundle.add_transaction(ProposedTransaction(...))
bundle.add_transaction(ProposedTransaction(...))

bundle.add_inputs([
Address(
address =

b'TESTVALUE9DONTUSEINPRODUCTION99999HAA9UA'
b'MHCGKEUGYFUBIARAXBFASGLCHCBEVGTBDCSAEBTBM',

balance = 86,
key_index = 0,

),
])

bundle.send_unspent_inputs_to(
Address(
b'TESTVALUE9DONTUSEINPRODUCTION99999D99HEA'
b'M9XADCPFJDFANCIHR9OBDHTAGGE9TGCI9EO9ZCRBN'

),
)

bundle.finalize()
bundle.sign_inputs(KeyGenerator(b'SEED9GOES9HERE'))

Once the ProposedBundle has been finalized (and inputs signed, if necessary), invoke its ProposedBundle.
as_tryte_strings() method to generate the raw trytes that should be included in an Iota.
attach_to_tangle() API request.

3.13. Bundle Types 35

PyOTA Documentation

36 Chapter 3. PyOTA Types

CHAPTER

FOUR

ADAPTERS AND WRAPPERS

The Iota class defines the API methods that are available for interacting with the node, but it delegates the actual
interaction to another set of classes: Adapters and Wrappers.

The API instance’s methods contain the logic and handle PyOTA-specific types, construct and translate objects, while
the API instance’s adapter deals with the networking, communicating with a node.

You can choose and configure the available adapters to be used with the API:

• HttpAdapter,

• MockAdapter.

4.1 AdapterSpec

In a few places in the PyOTA codebase, you may see references to a meta-type called AdapterSpec.

iota.adapter.AdapterSpec = typing.Union[str, ForwardRef('BaseAdapter')]
Placeholder that means “URI or adapter instance”.

Will be resolved to a correctly-configured adapter instance upon API instance creation.

For example, when creating an Iota object, the first argument of Iota.__init__() is an AdapterSpec. This
means that you can initialize an Iota object using either a node URI, or an adapter instance:

• Node URI:

api = Iota('http://localhost:14265')

• Adapter instance:

api = Iota(HttpAdapter('http://localhost:14265'))

4.2 Adapters

Adapters are responsible for sending requests to the node and returning the response.

PyOTA ships with a few adapters:

37

PyOTA Documentation

4.2.1 HttpAdapter

from iota import Iota, HttpAdapter

Use HTTP:
api = Iota('http://localhost:14265')
api = Iota(HttpAdapter('http://localhost:14265'))

Use HTTPS:
api = Iota('https://nodes.thetangle.org:443')
api = Iota(HttpAdapter('https://nodes.thetangle.org:443'))

Use HTTPS with basic authentication and 60 seconds timeout:
api = Iota(

HttpAdapter(
'https://nodes.thetangle.org:443',
authentication=('myusername', 'mypassword'),
timeout=60))

class iota.HttpAdapter(uri: Union[str, urllib.parse.SplitResult], timeout: Optional[int] = None, au-
thentication: Optional[Tuple[str, str]] = None)

Sends standard HTTP(S) requests to the node.

Parameters

• uri (AdapterSpec) – URI or adapter instance.

If uri is a str, it is parsed to extract scheme, hostname and port.

• timeout (Optional[int]) – Connection timeout in seconds.

• authentication (Optional[Tuple(str,str)]) – Credetentials for basic au-
thentication with the node.

Returns HttpAdapter object.

Raises InvalidUri –

• if protocol is unsupported.

• if hostname is empty.

• if non-numeric port is supplied.

To configure an Iota instance to use HttpAdapter, specify an http:// or https:// URI, or provide an
HttpAdapter instance.

The HttpAdapter raises a BadApiResponse exception if the server sends back an error response (due to invalid
request parameters, for example).

Debugging HTTP Requests

To see all HTTP requests and responses as they happen, attach a logging.Logger instance to the adapter via its
set_logger method.

Any time the HttpAdapter sends a request or receives a response, it will first generate a log message. Note: if the
response is an error response (e.g., due to invalid request parameters), the HttpAdapter will log the request before
raising BadApiResponse.

38 Chapter 4. Adapters and Wrappers

PyOTA Documentation

Note: HttpAdapter generates log messages with DEBUG level, so make sure that your logger’s level attribute
is set low enough that it doesn’t filter these messages!

Logging to console with default format

from logging import getLogger, basicConfig, DEBUG
from iota import Iota

api = Iota("https://nodes.thetangle.org:443")

Sets the logging level for the root logger (and for its handlers)
basicConfig(level=DEBUG)

Get a new logger derived from the root logger
logger = getLogger(__name__)

Attach the logger to the adapter
api.adapter.set_logger(logger)

Execute a command that sends request to the node
api.get_node_info()

Log messages should be printed to console

Logging to a file with custom format

from logging import getLogger, DEBUG, FileHandler, Formatter
from iota import Iota

Create a custom logger
logger = getLogger(__name__)

Set logging level to DEBUG
logger.setLevel(DEBUG)

Create handler to write to a log file
f_handler = FileHandler(filename='pyota.log',mode='a')
f_handler.setLevel(DEBUG)

Create formatter and add it to handler
f_format = Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
f_handler.setFormatter(f_format)

Add handler to the logger
logger.addHandler(f_handler)

Create API instance
api = Iota("https://nodes.thetangle.org:443")

Add logger to the adapter of the API instance
api.adapter.set_logger(logger)

Sends a request to the node
api.get_node_info()

Open 'pyota.log' file and observe the logs

4.2. Adapters 39

PyOTA Documentation

Logging to console with custom format

from logging import getLogger, DEBUG, StreamHandler, Formatter
from iota import Iota

Create a custom logger
logger = getLogger(__name__)

Set logging level to DEBUG
logger.setLevel(DEBUG)

Create handler to write to sys.stderr
s_handler = StreamHandler()
s_handler.setLevel(DEBUG)

Create formatter and add it to handler
s_format = Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
s_handler.setFormatter(s_format)

Add handler to the logger
logger.addHandler(s_handler)

Create API instance
api = Iota("https://nodes.thetangle.org:443")

Add logger to the adapter of the API instance
api.adapter.set_logger(logger)

Sends a request to the node
api.get_node_info()

Observe log messages in console

4.2.2 MockAdapter

from iota import Iota, MockAdapter

Inject a mock adapter.
api = Iota('mock://')
api = Iota(MockAdapter())

Seed responses from the node.
api.adapter.seed_response('getNodeInfo', {'message': 'Hello, world!'})
api.adapter.seed_response('getNodeInfo', {'message': 'Hello, IOTA!'})

Invoke API commands, using the adapter.
print(api.get_node_info()) # {'message': 'Hello, world!'}
print(api.get_node_info()) # {'message': 'Hello, IOTA!'}
print(api.get_node_info()) # raises BadApiResponse exception

class iota.MockAdapter
A mock adapter used for simulating API responses without actually sending any requests to the node.

This is particularly useful in unit and functional tests where you want to verify that your code works correctly
in specific scenarios, without having to engineer your own subtangle.

To use this adapter, you must first “seed” the responses that the adapter should return for each request. The

40 Chapter 4. Adapters and Wrappers

PyOTA Documentation

adapter will then return the appropriate seeded response each time it “sends” a request.

Parameters None – To construct a MockAdapter, you don’t need to supply any arguments.

Returns MockAdapter object.

To configure an Iota instance to use MockAdapter, specify mock:// as the node URI, or provide a
MockAdapter instance.

Example usage:

from iota import Iota, MockAdapter

Create API with a mock adapter.
api = Iota('mock://')
api = Iota(MockAdapter())

To use MockAdapter, you must first seed the responses that you want it to return by calling its MockAdapter.
seed_response() method.

seed_response

MockAdapter.seed_response(command: str, response: dict)→ iota.adapter.MockAdapter
Sets the response that the adapter will return for the specified command.

You can seed multiple responses per command; the adapter will put them into a FIFO queue. When a request
comes in, the adapter will pop the corresponding response off of the queue.

Note that you have to call seed_response() once for each request you expect it to process. If
MockAdapter does not have a seeded response for a particular command, it will raise a BadApiResponse
exception (simulates a 404 response).

Parameters

• command (str) – The name of the command. Note that this is the camelCase version of
the command name (e.g., getNodeInfo, not get_node_info).

• response (dict) – The response that the adapter will return.

Example usage:

adapter.seed_response('sayHello', {'message': 'Hi!'})
adapter.seed_response('sayHello', {'message': 'Hello!'})

adapter.send_request({'command': 'sayHello'})
{'message': 'Hi!'}

adapter.send_request({'command': 'sayHello'})
{'message': 'Hello!'}

4.2. Adapters 41

PyOTA Documentation

4.3 Wrappers

Wrappers act like decorators for adapters; they are used to enhance or otherwise modify the behavior of adapters.

4.3.1 RoutingWrapper

class iota.adapter.wrappers.RoutingWrapper(default_adapter: Union[str, BaseAdapter])
Routes commands (API requests) to different nodes depending on the command name.

This allows you to, for example, send POW requests to a local node, while routing all other requests to a remote
one.

Once you’ve initialized the RoutingWrapper, invoke its add_route() method to specify a different
adapter to use for a particular command.

Parameters default_adapter (AdapterSpec) – RoutingWrapper must be initialized with a
default URI/adapter. This is the adapter that will be used for any command that doesn’t have a
route associated with it.

Returns RoutingWrapper object.

Example usage:

from iota import Iota
from iota.adapter.wrappers import RoutingWrapper

Route POW to localhost, everything else to 'https://nodes.thetangle.org:443'.
api = Iota(
RoutingWrapper('https://nodes.thetangle.org:443.'')

.add_route('attachToTangle', 'http://localhost:14265')

.add_route('interruptAttachingToTangle', 'http://localhost:14265')
)

Note: A common use case for RoutingWrapper is to perform proof-of-work on a specific (local) node, but
let all other requests go to another node. Take care when you use RoutingWrapper adapter and local_pow
parameter together in an API instance (see iota.Iota), because the behavior might not be obvious.

local_pow tells the API to perform proof-of-work (iota.Iota.attach_to_tangle()) without rely-
ing on an actual node. It does this by calling an extension package PyOTA-PoW that does the job. In PyOTA,
this means the request doesn’t reach the adapter, it is redirected before. As a consequence, local_pow has
precedence over the route that is defined in RoutingWrapper.

add_route

RoutingWrapper.add_route(command: str, adapter: Union[str, BaseAdapter]) →
iota.adapter.wrappers.RoutingWrapper

Adds a route to the wrapper.

Parameters

• command (str) – The name of the command. Note that this is the camelCase version of
the command name (e.g., attachToTangle, not attach_to_tangle).

• adapter (AdapterSpec) – The adapter object or URI to route requests to.

42 Chapter 4. Adapters and Wrappers

https://pypi.org/project/PyOTA-PoW/

PyOTA Documentation

Returns The RoutingWrapper object it was called on. Useful for chaining the operation of
adding routes in code.

See RoutingWrapper for example usage.

4.3. Wrappers 43

PyOTA Documentation

44 Chapter 4. Adapters and Wrappers

CHAPTER

FIVE

PYOTA API CLASSES

PyOTA offers you the Python API to interact with the IOTA network. The available methods can be grouped
into two categories:

Core API Extended API

API commands for direct
interaction with a node.

Builds on top of the Core API to
perform more complex operations,
and abstract away low-level IOTA
specific procedures.

PyOTA supports both synchronous and asynchronous communication with the network, therefore the Core and
Extended API classes are available in synchronous and asynchronous versions.

To use the API in your Python application or script, declare an API instance of any of the API classes. Since the
Extended API incorporates the Core API, usually you end up only using the Extended API, but if for some
reason you need only the core functionality, the library is there to help you.

1 # Synchronous API classes
2 from iota import Iota, StrictIota
3

4 # This is how you declare a sync Extended API, use the methods of this object.
5 api = Iota('adapter-specification')
6

7 # This is how you declare a sync Core API, use the methods of this object.
8 api = StrictIota('adapter-specification')

The PyOTA speific StrictIota class implements the Core API, while Iota implements the Extended API. From
a Python implementation point of view, Iota is a subclass of StrictIota, therefore it inherits every method and
attribute the latter has.

To use the functionally same, but asynchronous API classes, you can do the following:

1 # Asynchronous API classes
2 from iota import AsyncIota, AsyncStrictIota
3

4 # This is how you declare an async Extended API, use the methods of this object.
5 api = AsyncIota('adapter-specification')
6

7 # This is how you declare an async Core API, use the methods of this object.
8 api = AsyncStrictIota('adapter-specification')

45

PyOTA Documentation

Take a look on the class definitions and notice that Iota and AsyncIota have a Seed attribute. This is because the
Extended API is able to generate private keys, addresses and signatures from your seed. Your seed never leaves the
library and your machine!

5.1 Core API Classes

5.1.1 Synchronous

class iota.StrictIota(adapter: Union[str, BaseAdapter], devnet: bool = False, local_pow: bool =
False)

Synchronous API to send HTTP requests for communicating with an IOTA node.

This implementation only exposes the “core” API methods. For a more feature-complete implementation, use
Iota instead.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference

Parameters

• adapter (AdapterSpec) – URI string or BaseAdapter instance.

• devnet (Optional[bool]) – Whether to use devnet settings for this instance. On the
devnet, minimum weight magnitude is set to 9, on mainnet it is 1 by default.

• local_pow (Optional[bool]) – Whether to perform proof-of-work locally by redi-
recting all calls to attach_to_tangle() to ccurl pow interface.

See README:Optional Local Pow for more info and find out how to use it.

set_local_pow(local_pow: bool)→ None
Sets the local_pow attribute of the adapter of the api instance. If it is True, attach_to_tangle()
command calls external interface to perform proof of work, instead of sending the request to a node.

By default, local_pow is set to False. This particular method is needed if one wants to change
local_pow behavior dynamically.

Parameters local_pow (bool) – Whether to perform pow locally.

Returns None

5.1.2 Asynchronous

class iota.AsyncStrictIota(adapter: Union[str, BaseAdapter], devnet: bool = False, local_pow:
bool = False)

Asynchronous API to send HTTP requests for communicating with an IOTA node.

This implementation only exposes the “core” API methods. For a more feature-complete implementation, use
AsyncIota instead.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference

Parameters

• adapter (AdapterSpec) – URI string or BaseAdapter instance.

46 Chapter 5. PyOTA API Classes

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://pypi.org/project/PyOTA-PoW/
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference

PyOTA Documentation

• devnet (Optional[bool]) – Whether to use devnet settings for this instance. On the
devnet, minimum weight magnitude is set to 9, on mainnet it is 1 by default.

• local_pow (Optional[bool]) – Whether to perform proof-of-work locally by redi-
recting all calls to attach_to_tangle() to ccurl pow interface.

See README:Optional Local Pow for more info and find out how to use it.

set_local_pow(local_pow: bool)→ None
Sets the local_pow attribute of the adapter of the api instance. If it is True, attach_to_tangle()
command calls external interface to perform proof of work, instead of sending the request to a node.

By default, local_pow is set to False. This particular method is needed if one wants to change
local_pow behavior dynamically.

Parameters local_pow (bool) – Whether to perform pow locally.

Returns None

5.2 Extended API Classes

5.2.1 Synchronous

class iota.Iota(adapter: Union[str, BaseAdapter], seed: Union[AnyStr, bytearray, TryteString, None]
= None, devnet: bool = False, local_pow: bool = False)

Implements the synchronous core API, plus additional synchronous wrapper methods for common operations.

Parameters

• adapter (AdapterSpec) – URI string or BaseAdapter instance.

• seed (Optional[Seed]) – Seed used to generate new addresses. If not provided, a
random one will be generated.

Note: This value is never transferred to the node/network.

• devnet (Optional[bool]) – Whether to use devnet settings for this instance. On the
devnet, minimum weight magnitude is decreased, on mainnet it is 14 by default.

For more info on the Mainnet and the Devnet, visit the official docs
site<https://docs.iota.org/docs/getting-started/0.1/network/iota-networks/>.

• local_pow (Optional[bool]) – Whether to perform proof-of-work locally by redi-
recting all calls to attach_to_tangle() to ccurl pow interface.

See README:Optional Local Pow for more info and find out how to use it.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md

set_local_pow(local_pow: bool)→ None
Sets the local_pow attribute of the adapter of the api instance. If it is True, attach_to_tangle()
command calls external interface to perform proof of work, instead of sending the request to a node.

By default, local_pow is set to False. This particular method is needed if one wants to change
local_pow behavior dynamically.

5.2. Extended API Classes 47

https://pypi.org/project/PyOTA-PoW/
https://pypi.org/project/PyOTA-PoW/
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://github.com/iotaledger/wiki/blob/master/api-proposal.md

PyOTA Documentation

Parameters local_pow (bool) – Whether to perform pow locally.

Returns None

5.2.2 Asynchronous

class iota.AsyncIota(adapter: Union[str, BaseAdapter], seed: Union[AnyStr, bytearray, TryteString,
None] = None, devnet: bool = False, local_pow: bool = False)

Implements the async core API, plus additional async wrapper methods for common operations.

Parameters

• adapter (AdapterSpec) – URI string or BaseAdapter instance.

• seed (Optional[Seed]) – Seed used to generate new addresses. If not provided, a
random one will be generated.

Note: This value is never transferred to the node/network.

• devnet (Optional[bool]) – Whether to use devnet settings for this instance. On the
devnet, minimum weight magnitude is decreased, on mainnet it is 14 by default.

For more info on the Mainnet and the Devnet, visit the official docs
site<https://docs.iota.org/docs/getting-started/0.1/network/iota-networks/>.

• local_pow (Optional[bool]) – Whether to perform proof-of-work locally by redi-
recting all calls to attach_to_tangle() to ccurl pow interface.

See README:Optional Local Pow for more info and find out how to use it.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md

set_local_pow(local_pow: bool)→ None
Sets the local_pow attribute of the adapter of the api instance. If it is True, attach_to_tangle()
command calls external interface to perform proof of work, instead of sending the request to a node.

By default, local_pow is set to False. This particular method is needed if one wants to change
local_pow behavior dynamically.

Parameters local_pow (bool) – Whether to perform pow locally.

Returns None

48 Chapter 5. PyOTA API Classes

https://pypi.org/project/PyOTA-PoW/
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://github.com/iotaledger/wiki/blob/master/api-proposal.md

CHAPTER

SIX

CORE API METHODS

The Core API includes all of the core API calls that are made available by the current IOTA Reference Implementation.

These methods are “low level” and generally do not need to be called directly.

For the full documentation of all the Core API calls, please refer to the official documentation.

Note: Below you will find the documentation for both the synchronous and asynchronous versions of the Core API
methods.

It should be made clear, that they do exactly the same IOTA related operations, accept the same arguments and return
the same structures. Asynchronous API calls are non-blocking, so your application can do other stuff while waiting
for the result from the network.

While synchronous API calls are regular Python methods, their respective asynchronous versions are Python corou-
tines. You can await their results, schedule them for execution inside and event loop and much more. PyOTA uses
the built-in asyncio Python module for asynchronous operation. For an overview of what you can do with it, head over
to this article.

6.1 add_neighbors

Iota.add_neighbors(uris: Iterable[str])→ dict
Add one or more neighbors to the node. Lasts until the node is restarted.

Parameters uris (Iterable[str]) – Use format <protocol>://<ip
address>:<port>. Example: add_neighbors(['udp://example.
com:14265'])

Note: These URIs are for node-to-node communication (e.g., weird things will happen if you
specify a node’s HTTP API URI here).

Returns

dict with the following structure:

{
'addedNeighbors': int,

Total number of added neighbors.
'duration': int,

Number of milliseconds it took to complete the request.
}

49

https://github.com/iotaledger/iri
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio.html
https://realpython.com/async-io-python/

PyOTA Documentation

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#addneighbors

async AsyncIota.add_neighbors(uris: Iterable[str])→ dict
Add one or more neighbors to the node. Lasts until the node is restarted.

Parameters uris (Iterable[str]) – Use format <protocol>://<ip
address>:<port>. Example: add_neighbors(['udp://example.
com:14265'])

Note: These URIs are for node-to-node communication (e.g., weird things will happen if you
specify a node’s HTTP API URI here).

Returns

dict with the following structure:

{
'addedNeighbors': int,

Total number of added neighbors.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#addneighbors

6.2 attach_to_tangle

Iota.attach_to_tangle(trunk_transaction: iota.transaction.types.TransactionHash,
branch_transaction: iota.transaction.types.TransactionHash, trytes: It-
erable[iota.types.TryteString], min_weight_magnitude: Optional[int] =
None)→ dict

Attaches the specified transactions (trytes) to the Tangle by doing Proof of Work. You need to supply branch-
Transaction as well as trunkTransaction (basically the tips which you’re going to validate and reference with
this transaction) - both of which you’ll get through the get_transactions_to_approve() API call.

The returned value is a different set of tryte values which you can input into broadcast_transactions()
and store_transactions().

Parameters

• trunk_transaction (TransactionHash) – Trunk transaction hash.

• branch_transaction (TransactionHash) – Branch transaction hash.

• trytes (Iterable[TransactionTrytes]) – List of transaction trytes in the bundle
to be attached.

• min_weight_magnitude (Optional[int]) – Minimum weight magnitude to be
used for attaching trytes. 14 by default on mainnet, 9 on devnet/devnet.

Returns

dict with the following structure:

50 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#addneighbors
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#addneighbors

PyOTA Documentation

{
'trytes': List[TransactionTrytes],

Transaction trytes that include a valid nonce field.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#attachtotangle

async AsyncIota.attach_to_tangle(trunk_transaction: iota.transaction.types.TransactionHash,
branch_transaction: iota.transaction.types.TransactionHash,
trytes: Iterable[iota.types.TryteString],
min_weight_magnitude: Optional[int] = None)→ dict

Attaches the specified transactions (trytes) to the Tangle by doing Proof of Work. You need to supply branch-
Transaction as well as trunkTransaction (basically the tips which you’re going to validate and reference with
this transaction) - both of which you’ll get through the get_transactions_to_approve() API call.

The returned value is a different set of tryte values which you can input into broadcast_transactions()
and store_transactions().

Parameters

• trunk_transaction (TransactionHash) – Trunk transaction hash.

• branch_transaction (TransactionHash) – Branch transaction hash.

• trytes (Iterable[TransactionTrytes]) – List of transaction trytes in the bundle
to be attached.

• min_weight_magnitude (Optional[int]) – Minimum weight magnitude to be
used for attaching trytes. 14 by default on mainnet, 9 on devnet/devnet.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Transaction trytes that include a valid nonce field.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#attachtotangle

6.3 broadcast_transactions

Iota.broadcast_transactions(trytes: Iterable[iota.types.TryteString])→ dict
Broadcast a list of transactions to all neighbors.

The input trytes for this call are provided by attach_to_tangle().

Parameters trytes (Iterable[TransactionTrytes]) – List of transaction trytes to be
broadcast.

Returns

dict with the following structure:

6.3. broadcast_transactions 51

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#attachtotangle
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#attachtotangle

PyOTA Documentation

{
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#broadcasttransactions

async AsyncIota.broadcast_transactions(trytes: Iterable[iota.types.TryteString])→ dict
Broadcast a list of transactions to all neighbors.

The input trytes for this call are provided by attach_to_tangle().

Parameters trytes (Iterable[TransactionTrytes]) – List of transaction trytes to be
broadcast.

Returns

dict with the following structure:

{
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#broadcasttransactions

6.4 check_consistency

Iota.check_consistency(tails: Iterable[iota.transaction.types.TransactionHash])→ dict
Used to ensure tail resolves to a consistent ledger which is necessary to validate before attempting promotion.
Checks transaction hashes for promotability.

This is called with a pending transaction (or more of them) and it will tell you if it is still possible for this
transaction (or all the transactions simultaneously if you give more than one) to be confirmed, or not (because it
conflicts with another already confirmed transaction).

Parameters tails (Iterable[TransactionHash]) – Transaction hashes. Must be tail
transactions.

Returns

dict with the following structure:

{
'state': bool,

Whether tails resolve to consistent ledger.
'info': str,

This field will only exist if 'state' is ``False``.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#checkconsistency

52 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#broadcasttransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#broadcasttransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#checkconsistency

PyOTA Documentation

async AsyncIota.check_consistency(tails: Iterable[iota.transaction.types.TransactionHash]) →
dict

Used to ensure tail resolves to a consistent ledger which is necessary to validate before attempting promotion.
Checks transaction hashes for promotability.

This is called with a pending transaction (or more of them) and it will tell you if it is still possible for this
transaction (or all the transactions simultaneously if you give more than one) to be confirmed, or not (because it
conflicts with another already confirmed transaction).

Parameters tails (Iterable[TransactionHash]) – Transaction hashes. Must be tail
transactions.

Returns

dict with the following structure:

{
'state': bool,

Whether tails resolve to consistent ledger.
'info': str,

This field will only exist if 'state' is ``False``.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#checkconsistency

6.5 find_transactions

Iota.find_transactions(bundles: Optional[Iterable[iota.transaction.types.BundleHash]] =
None, addresses: Optional[Iterable[iota.types.Address]] = None,
tags: Optional[Iterable[iota.types.Tag]] = None, approvees: Op-
tional[Iterable[iota.transaction.types.TransactionHash]] = None) →
dict

Find the transactions which match the specified input and return.

All input values are lists, for which a list of return values (transaction hashes), in the same order, is returned for
all individual elements.

Using multiple of these input fields returns the intersection of the values.

Parameters

• bundles (Optional[Iterable[BundleHash]) – List of bundle IDs.

• addresses (Optional[Iterable[Address]]) – List of addresses.

• tags (Optional[Iterable[Tag]]) – List of tags.

• approvees (Optional[Iterable[TransactionHash]]) – List of approvee
transaction IDs.

Returns

dict with the following structure:

{
'hashes': List[TransationHash],

Found transactions.
}

6.5. find_transactions 53

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#checkconsistency

PyOTA Documentation

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#findtransactions

async AsyncIota.find_transactions(bundles: Optional[Iterable[iota.transaction.types.BundleHash]]
= None, addresses: Optional[Iterable[iota.types.Address]]
= None, tags: Optional[Iterable[iota.types.Tag]]
= None, approvees: Op-
tional[Iterable[iota.transaction.types.TransactionHash]] =
None)→ dict

Find the transactions which match the specified input and return.

All input values are lists, for which a list of return values (transaction hashes), in the same order, is returned for
all individual elements.

Using multiple of these input fields returns the intersection of the values.

Parameters

• bundles (Optional[Iterable[BundleHash]) – List of bundle IDs.

• addresses (Optional[Iterable[Address]]) – List of addresses.

• tags (Optional[Iterable[Tag]]) – List of tags.

• approvees (Optional[Iterable[TransactionHash]]) – List of approvee
transaction IDs.

Returns

dict with the following structure:

{
'hashes': List[TransationHash],

Found transactions.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#findtransactions

6.6 get_balances

Iota.get_balances(addresses: Iterable[iota.types.Address], tips: Op-
tional[Iterable[iota.transaction.types.TransactionHash]] = None)→ dict

Returns the confirmed balance which a list of addresses have at the latest confirmed milestone.

In addition to the balances, it also returns the milestone as well as the index with which the confirmed balance
was determined. The balances are returned as a list in the same order as the addresses were provided as input.

Parameters

• addresses (Iterable[Address]) – List of addresses to get the confirmed balance
for.

• tips (Optional[Iterable[TransactionHash]]) – Tips whose history of trans-
actions to traverse to find the balance.

Returns

dict with the following structure:

54 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#findtransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#findtransactions

PyOTA Documentation

{
'balances': List[int],

List of balances in the same order as the addresses
parameters that were passed to the endpoint.

'references': List[TransactionHash],
The referencing tips. If no tips parameter was passed
to the endpoint, this field contains the hash of the
latest milestone that confirmed the balance.

'milestoneIndex': int,
The index of the milestone that confirmed the most
recent balance.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getbalances

async AsyncIota.get_balances(addresses: Iterable[iota.types.Address], tips: Op-
tional[Iterable[iota.transaction.types.TransactionHash]] = None)
→ dict

Returns the confirmed balance which a list of addresses have at the latest confirmed milestone.

In addition to the balances, it also returns the milestone as well as the index with which the confirmed balance
was determined. The balances are returned as a list in the same order as the addresses were provided as input.

Parameters

• addresses (Iterable[Address]) – List of addresses to get the confirmed balance
for.

• tips (Optional[Iterable[TransactionHash]]) – Tips whose history of trans-
actions to traverse to find the balance.

Returns

dict with the following structure:

{
'balances': List[int],

List of balances in the same order as the addresses
parameters that were passed to the endpoint.

'references': List[TransactionHash],
The referencing tips. If no tips parameter was passed
to the endpoint, this field contains the hash of the
latest milestone that confirmed the balance.

'milestoneIndex': int,
The index of the milestone that confirmed the most
recent balance.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getbalances

6.6. get_balances 55

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getbalances
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getbalances

PyOTA Documentation

6.7 get_inclusion_states

Iota.get_inclusion_states(transactions: Iterable[iota.transaction.types.TransactionHash])→ dict
Get the inclusion states of a set of transactions. This is for determining if a transaction was accepted and
confirmed by the network or not.

Parameters transactions (Iterable[TransactionHash]) – List of transactions you
want to get the inclusion state for.

Returns

dict with the following structure:

{
'states': List[bool],

List of boolean values in the same order as the
transactions parameters. A ``True`` value means the
transaction was confirmed.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

async AsyncIota.get_inclusion_states(transactions: Iterable[iota.transaction.types.TransactionHash])
→ dict

Get the inclusion states of a set of transactions. This is for determining if a transaction was accepted and
confirmed by the network or not.

Parameters transactions (Iterable[TransactionHash]) – List of transactions you
want to get the inclusion state for.

Returns

dict with the following structure:

{
'states': List[bool],

List of boolean values in the same order as the
transactions parameters. A ``True`` value means the
transaction was confirmed.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

56 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

PyOTA Documentation

6.8 get_missing_transactions

Iota.get_missing_transactions()→ dict
Returns all transaction hashes that a node is currently requesting from its neighbors.

Returns

dict with the following structure:

{
'hashes': List[TransactionHash],

Array of missing transaction hashes.
'duration': int,

Number of milliseconds it took to process the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getmissingtransactions

async AsyncIota.get_missing_transactions()→ dict
Returns all transaction hashes that a node is currently requesting from its neighbors.

Returns

dict with the following structure:

{
'hashes': List[TransactionHash],

Array of missing transaction hashes.
'duration': int,

Number of milliseconds it took to process the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getmissingtransactions

6.9 get_neighbors

Iota.get_neighbors()→ dict
Returns the set of neighbors the node is connected with, as well as their activity count.

The activity counter is reset after restarting IRI.

Returns

dict with the following structure:

{
'neighbors': List[dict],

Array of objects, including the following fields with
example values:

"address": "/8.8.8.8:14265",
"numberOfAllTransactions": 158,
"numberOfRandomTransactionRequests": 271,
"numberOfNewTransactions": 956,
"numberOfInvalidTransactions": 539,

(continues on next page)

6.8. get_missing_transactions 57

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getmissingtransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getmissingtransactions

PyOTA Documentation

(continued from previous page)

"numberOfStaleTransactions": 663,
"numberOfSentTransactions": 672,
"connectiontype": "TCP"

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getneighbors

async AsyncIota.get_neighbors()→ dict
Returns the set of neighbors the node is connected with, as well as their activity count.

The activity counter is reset after restarting IRI.

Returns

dict with the following structure:

{
'neighbors': List[dict],

Array of objects, including the following fields with
example values:

"address": "/8.8.8.8:14265",
"numberOfAllTransactions": 158,
"numberOfRandomTransactionRequests": 271,
"numberOfNewTransactions": 956,
"numberOfInvalidTransactions": 539,
"numberOfStaleTransactions": 663,
"numberOfSentTransactions": 672,
"connectiontype": "TCP"

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getneighbors

6.10 get_node_api_configuration

Iota.get_node_api_configuration()→ dict
Returns a node’s API configuration settings.

Returns

dict with the following structure:

{
'<API-config-settings>': type,

Configuration parameters for a node.
...
...
...

}

58 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getneighbors
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getneighbors

PyOTA Documentation

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/iri-configuration-options

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeapiconfiguration

async AsyncIota.get_node_api_configuration()→ dict
Returns a node’s API configuration settings.

Returns

dict with the following structure:

{
'<API-config-settings>': type,

Configuration parameters for a node.
...
...
...

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/iri-configuration-options

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeapiconfiguration

6.11 get_node_info

Iota.get_node_info()→ dict
Returns information about the node.

Returns

dict with the following structure:

{
'appName': str,

Name of the IRI network.
'appVersion': str,

Version of the IRI.
'jreAvailableProcessors': int,

Available CPU cores on the node.
'jreFreeMemory': int,

Amount of free memory in the Java virtual machine.
'jreMaxMemory': int,

Maximum amount of memory that the Java virtual machine
can use,

'jreTotalMemory': int,
Total amount of memory in the Java virtual machine.

'jreVersion': str,
The version of the Java runtime environment.

'latestMilestone': TransactionHash
Transaction hash of the latest milestone.

'latestMilestoneIndex': int,
Index of the latest milestone.

'latestSolidSubtangleMilestone': TransactionHash,
Transaction hash of the latest solid milestone.

(continues on next page)

6.11. get_node_info 59

https://docs.iota.org/docs/node-software/0.1/iri/references/iri-configuration-options
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeapiconfiguration
https://docs.iota.org/docs/node-software/0.1/iri/references/iri-configuration-options
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeapiconfiguration

PyOTA Documentation

(continued from previous page)

'latestSolidSubtangleMilestoneIndex': int,
Index of the latest solid milestone.

'milestoneStartIndex': int,
Start milestone for the current version of the IRI.

'neighbors': int,
Total number of connected neighbor nodes.

'packetsQueueSize': int,
Size of the packet queue.

'time': int,
Current UNIX timestamp.

'tips': int,
Number of tips in the network.

'transactionsToRequest': int,
Total number of transactions that the node is missing in
its ledger.

'features': List[str],
Enabled configuration options.

'coordinatorAddress': Address,
Address (Merkle root) of the Coordinator.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeinfo

async AsyncIota.get_node_info()→ dict
Returns information about the node.

Returns

dict with the following structure:

{
'appName': str,

Name of the IRI network.
'appVersion': str,

Version of the IRI.
'jreAvailableProcessors': int,

Available CPU cores on the node.
'jreFreeMemory': int,

Amount of free memory in the Java virtual machine.
'jreMaxMemory': int,

Maximum amount of memory that the Java virtual machine
can use,

'jreTotalMemory': int,
Total amount of memory in the Java virtual machine.

'jreVersion': str,
The version of the Java runtime environment.

'latestMilestone': TransactionHash
Transaction hash of the latest milestone.

'latestMilestoneIndex': int,
Index of the latest milestone.

'latestSolidSubtangleMilestone': TransactionHash,
Transaction hash of the latest solid milestone.

'latestSolidSubtangleMilestoneIndex': int,
Index of the latest solid milestone.

(continues on next page)

60 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeinfo

PyOTA Documentation

(continued from previous page)

'milestoneStartIndex': int,
Start milestone for the current version of the IRI.

'neighbors': int,
Total number of connected neighbor nodes.

'packetsQueueSize': int,
Size of the packet queue.

'time': int,
Current UNIX timestamp.

'tips': int,
Number of tips in the network.

'transactionsToRequest': int,
Total number of transactions that the node is missing in
its ledger.

'features': List[str],
Enabled configuration options.

'coordinatorAddress': Address,
Address (Merkle root) of the Coordinator.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeinfo

6.12 get_transactions_to_approve

Iota.get_transactions_to_approve(depth: int, reference: Op-
tional[iota.transaction.types.TransactionHash] = None)
→ dict

Tip selection which returns trunkTransaction and branchTransaction.

Parameters

• depth (int) – Number of milestones to go back to start the tip selection algorithm.

The higher the depth value, the more “babysitting” the node will perform for the network
(as it will confirm more transactions that way).

• reference (TransactionHash) – Transaction hash from which to start the weighted
random walk. Use this parameter to make sure the returned tip transaction hashes approve a
given reference transaction.

Returns

dict with the following structure:

{
'trunkTransaction': TransactionHash,

Valid trunk transaction hash.
'branchTransaction': TransactionHash,

Valid branch transaction hash.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

6.12. get_transactions_to_approve 61

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getnodeinfo

PyOTA Documentation

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettransactionstoapprove

async AsyncIota.get_transactions_to_approve(depth: int, reference: Op-
tional[iota.transaction.types.TransactionHash]
= None)→ dict

Tip selection which returns trunkTransaction and branchTransaction.

Parameters

• depth (int) – Number of milestones to go back to start the tip selection algorithm.

The higher the depth value, the more “babysitting” the node will perform for the network
(as it will confirm more transactions that way).

• reference (TransactionHash) – Transaction hash from which to start the weighted
random walk. Use this parameter to make sure the returned tip transaction hashes approve a
given reference transaction.

Returns

dict with the following structure:

{
'trunkTransaction': TransactionHash,

Valid trunk transaction hash.
'branchTransaction': TransactionHash,

Valid branch transaction hash.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettransactionstoapprove

6.13 get_trytes

Iota.get_trytes(hashes: Iterable[iota.transaction.types.TransactionHash])→ dict
Returns the raw transaction data (trytes) of one or more transactions.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of transaction trytes for the given transaction
hashes (in the same order as the parameters).

'duration': int,
Number of milliseconds it took to complete the request.

}

Note: If a node doesn’t have the trytes for a given transaction hash in its ledger, the value at the
index of that transaction hash is either null or a string of 9s.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettrytes

62 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettransactionstoapprove
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettransactionstoapprove
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettrytes

PyOTA Documentation

async AsyncIota.get_trytes(hashes: Iterable[iota.transaction.types.TransactionHash])→ dict
Returns the raw transaction data (trytes) of one or more transactions.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of transaction trytes for the given transaction
hashes (in the same order as the parameters).

'duration': int,
Number of milliseconds it took to complete the request.

}

Note: If a node doesn’t have the trytes for a given transaction hash in its ledger, the value at the
index of that transaction hash is either null or a string of 9s.

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettrytes

6.14 interrupt_attaching_to_tangle

Iota.interrupt_attaching_to_tangle()→ dict
Interrupts and completely aborts the attach_to_tangle() process.

Returns

dict with the following structure:

{
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#interruptattachingtotangle

async AsyncIota.interrupt_attaching_to_tangle()→ dict
Interrupts and completely aborts the attach_to_tangle() process.

Returns

dict with the following structure:

{
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#interruptattachingtotangle

6.14. interrupt_attaching_to_tangle 63

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#gettrytes
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#interruptattachingtotangle
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#interruptattachingtotangle

PyOTA Documentation

6.15 remove_neighbors

Iota.remove_neighbors(uris: Iterable[str])→ dict
Removes one or more neighbors from the node. Lasts until the node is restarted.

Parameters uris (str) – Use format <protocol>://<ip address>:<port>. Example:
remove_neighbors([‘udp://example.com:14265’])

Returns

dict with the following structure:

{
'removedNeighbors': int,

Total number of removed neighbors.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#removeneighbors

async AsyncIota.remove_neighbors(uris: Iterable[str])→ dict
Removes one or more neighbors from the node. Lasts until the node is restarted.

Parameters uris (str) – Use format <protocol>://<ip address>:<port>. Example:
remove_neighbors([‘udp://example.com:14265’])

Returns

dict with the following structure:

{
'removedNeighbors': int,

Total number of removed neighbors.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#removeneighbors

6.16 store_transactions

Iota.store_transactions(trytes: Iterable[iota.types.TryteString])→ dict
Store transactions into local storage of the node.

The input trytes for this call are provided by attach_to_tangle().

Parameters trytes (TransactionTrytes) – Valid transaction trytes returned by
attach_to_tangle().

Returns

dict with the following structure:

64 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#removeneighbors
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#removeneighbors

PyOTA Documentation

{
'trytes': TransactionTrytes,

Stored trytes.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#storetransactions

async AsyncIota.store_transactions(trytes: Iterable[iota.types.TryteString])→ dict
Store transactions into local storage of the node.

The input trytes for this call are provided by attach_to_tangle().

Parameters trytes (TransactionTrytes) – Valid transaction trytes returned by
attach_to_tangle().

Returns

dict with the following structure:

{
'trytes': TransactionTrytes,

Stored trytes.
'duration': int,

Number of milliseconds it took to complete the request.
}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#storetransactions

6.17 were_addresses_spent_from

Iota.were_addresses_spent_from(addresses: Iterable[iota.types.Address])→ dict
Check if a list of addresses was ever spent from, in the current epoch, or in previous epochs.

If an address has a pending transaction, it’s also considered ‘spent’.

Parameters addresses (Iterable[Address]) – List of addresses to check.

Returns

dict with the following structure:

{
'states': List[bool],

States of the specified addresses in the same order as
the values in the addresses parameter. A ``True`` value
means that the address has been spent from.

'duration': int,
Number of milliseconds it took to complete the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#wereaddressesspentfrom

6.17. were_addresses_spent_from 65

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#storetransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#storetransactions
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#wereaddressesspentfrom

PyOTA Documentation

async AsyncIota.were_addresses_spent_from(addresses: Iterable[iota.types.Address])→ dict
Check if a list of addresses was ever spent from, in the current epoch, or in previous epochs.

If an address has a pending transaction, it’s also considered ‘spent’.

Parameters addresses (Iterable[Address]) – List of addresses to check.

Returns

dict with the following structure:

{
'states': List[bool],

States of the specified addresses in the same order as
the values in the addresses parameter. A ``True`` value
means that the address has been spent from.

'duration': int,
Number of milliseconds it took to complete the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#wereaddressesspentfrom

66 Chapter 6. Core API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#wereaddressesspentfrom

CHAPTER

SEVEN

EXTENDED API METHODS

The Extended API includes a number of “high level” commands to perform tasks such as sending and receiving
transfers.

Note: Below you will find the documentation for both the synchronous and asynchronous versions of the Extebded
API methods.

It should be made clear, that they do exactly the same IOTA related operations, accept the same arguments and return
the same structures. Asynchronous API calls are non-blocking, so your application can do other stuff while waiting
for the result from the network.

While synchronous API calls are regular Python methods, their respective asynchronous versions are Python corou-
tines. You can await their results, schedule them for execution inside and event loop and much more. PyOTA uses
the built-in asyncio Python module for asynchronous operation. For an overview of what you can do with it, head over
to this article.

7.1 broadcast_and_store

Iota.broadcast_and_store(trytes: Iterable[iota.transaction.types.TransactionTrytes])→ dict
Broadcasts and stores a set of transaction trytes.

Parameters trytes (Iterable[TransactionTrytes]) – Transaction trytes to broadcast
and store.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of TransactionTrytes that were broadcast.
Same as the input ``trytes``.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#broadcastandstore

async AsyncIota.broadcast_and_store(trytes: Iterable[iota.transaction.types.TransactionTrytes])
→ dict

Broadcasts and stores a set of transaction trytes.

Parameters trytes (Iterable[TransactionTrytes]) – Transaction trytes to broadcast
and store.

67

https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio.html
https://realpython.com/async-io-python/
https://github.com/iotaledger/wiki/blob/master/api-proposal.md#broadcastandstore

PyOTA Documentation

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of TransactionTrytes that were broadcast.
Same as the input ``trytes``.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#broadcastandstore

7.2 broadcast_bundle

Iota.broadcast_bundle(tail_transaction_hash: iota.transaction.types.TransactionHash)→ dict
Re-broadcasts all transactions in a bundle given the tail transaction hash. It might be useful when transactions
did not properly propagate, particularly in the case of large bundles.

Parameters tail_transaction_hash (TransactionHash) – Tail transaction hash of the
bundle.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of TransactionTrytes that were broadcast.
}

References:

• https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.broadcastBundle

async AsyncIota.broadcast_bundle(tail_transaction_hash: iota.transaction.types.TransactionHash)
→ dict

Re-broadcasts all transactions in a bundle given the tail transaction hash. It might be useful when transactions
did not properly propagate, particularly in the case of large bundles.

Parameters tail_transaction_hash (TransactionHash) – Tail transaction hash of the
bundle.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

List of TransactionTrytes that were broadcast.
}

References:

• https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.broadcastBundle

68 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#broadcastandstore
https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.broadcastBundle
https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.broadcastBundle

PyOTA Documentation

7.3 find_transaction_objects

Iota.find_transaction_objects(bundles: Optional[Iterable[iota.transaction.types.BundleHash]]
= None, addresses: Optional[Iterable[iota.types.Address]]
= None, tags: Optional[Iterable[iota.types.Tag]] = None, ap-
provees: Optional[Iterable[iota.transaction.types.TransactionHash]]
= None)→ dict

A more extensive version of find_transactions() that returns transaction objects instead of hashes.

Effectively, this is find_transactions() + get_trytes() + converting the trytes into transaction ob-
jects.

It accepts the same parameters as find_transactions().

Find the transactions which match the specified input. All input values are lists, for which a list of return values
(transaction hashes), in the same order, is returned for all individual elements. Using multiple of these input
fields returns the intersection of the values.

Parameters

• bundles (Optional[Iterable[BundleHash]]) – List of bundle IDs.

• addresses (Optional[Iterable[Address]]) – List of addresses.

• tags (Optional[Iterable[Tag]]) – List of tags.

• approvees (Optional[Iterable[TransactionHash]]) – List of approvee
transaction IDs.

Returns

dict with the following structure:

{
'transactions': List[Transaction],

List of Transaction objects that match the input.
}

async AsyncIota.find_transaction_objects(bundles: Optional[Iterable[iota.transaction.types.BundleHash]]
= None, addresses: Op-
tional[Iterable[iota.types.Address]] = None,
tags: Optional[Iterable[iota.types.Tag]]
= None, approvees: Op-
tional[Iterable[iota.transaction.types.TransactionHash]]
= None)→ dict

A more extensive version of find_transactions() that returns transaction objects instead of hashes.

Effectively, this is find_transactions() + get_trytes() + converting the trytes into transaction ob-
jects.

It accepts the same parameters as find_transactions().

Find the transactions which match the specified input. All input values are lists, for which a list of return values
(transaction hashes), in the same order, is returned for all individual elements. Using multiple of these input
fields returns the intersection of the values.

Parameters

• bundles (Optional[Iterable[BundleHash]]) – List of bundle IDs.

• addresses (Optional[Iterable[Address]]) – List of addresses.

• tags (Optional[Iterable[Tag]]) – List of tags.

7.3. find_transaction_objects 69

PyOTA Documentation

• approvees (Optional[Iterable[TransactionHash]]) – List of approvee
transaction IDs.

Returns

dict with the following structure:

{
'transactions': List[Transaction],

List of Transaction objects that match the input.
}

7.4 get_account_data

Iota.get_account_data(start: int = 0, stop: Optional[int] = None, inclusion_states: bool = False,
security_level: Optional[int] = None)→ dict

More comprehensive version of get_transfers() that returns addresses and account balance in addition to
bundles.

This function is useful in getting all the relevant information of your account.

Parameters

• start (int) – Starting key index.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will check every address until it finds one that is unused.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the correct account data with stop being None.

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking and where to stop.

• inclusion_states (bool) – Whether to also fetch the inclusion states of the transfers.

This requires an additional API call to the node, so it is disabled by default.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

70 Chapter 7. Extended API Methods

PyOTA Documentation

{
'addresses': List[Address],

List of generated addresses.

Note that this list may include unused
addresses.

'balance': int,
Total account balance. Might be 0.

'bundles': List[Bundle],
List of bundles with transactions to/from this
account.

}

async AsyncIota.get_account_data(start: int = 0, stop: Optional[int] = None, inclusion_states:
bool = False, security_level: Optional[int] = None)→ dict

More comprehensive version of get_transfers() that returns addresses and account balance in addition to
bundles.

This function is useful in getting all the relevant information of your account.

Parameters

• start (int) – Starting key index.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will check every address until it finds one that is unused.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the correct account data with stop being None.

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking and where to stop.

• inclusion_states (bool) – Whether to also fetch the inclusion states of the transfers.

This requires an additional API call to the node, so it is disabled by default.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'addresses': List[Address],

(continues on next page)

7.4. get_account_data 71

PyOTA Documentation

(continued from previous page)

List of generated addresses.

Note that this list may include unused
addresses.

'balance': int,
Total account balance. Might be 0.

'bundles': List[Bundle],
List of bundles with transactions to/from this
account.

}

7.5 get_bundles

Iota.get_bundles(transactions: Iterable[iota.transaction.types.TransactionHash])→ dict
Returns the bundle(s) associated with the specified transaction hashes.

Parameters transactions (Iterable[TransactionHash]) – Transaction hashes. Must
be a tail transaction.

Returns

dict with the following structure:

{
'bundles': List[Bundle],

List of matching bundles. Note that this value is
always a list, even if only one bundle was found.

}

:raise iota.adapter.BadApiResponse:

• if any of the bundles fails validation.

• if any of the bundles is not visible on the Tangle.

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getbundle

async AsyncIota.get_bundles(transactions: Iterable[iota.transaction.types.TransactionHash]) →
dict

Returns the bundle(s) associated with the specified transaction hashes.

Parameters transactions (Iterable[TransactionHash]) – Transaction hashes. Must
be a tail transaction.

Returns

dict with the following structure:

{
'bundles': List[Bundle],

List of matching bundles. Note that this value is
always a list, even if only one bundle was found.

}

72 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getbundle

PyOTA Documentation

:raise iota.adapter.BadApiResponse:

• if any of the bundles fails validation.

• if any of the bundles is not visible on the Tangle.

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getbundle

7.6 get_inputs

Iota.get_inputs(start: int = 0, stop: Optional[int] = None, threshold: Optional[int] = None, secu-
rity_level: Optional[int] = None)→ dict

Gets all possible inputs of a seed and returns them, along with the total balance.

This is either done deterministically (by generating all addresses until find_transactions() returns an
empty result), or by providing a key range to search.

Parameters

• start (int) – Starting key index. Defaults to 0.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will not stop until it finds an unused address.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the correct inputs with stop being None.

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking for inputs and where to stop.

• threshold (Optional[int]) – If set, determines the minimum threshold for a suc-
cessful result:

– As soon as this threshold is reached, iteration will stop.

– If the command runs out of addresses before the threshold is reached, an exception is
raised.

Note: This method does not attempt to “optimize” the result (e.g., smallest number of
inputs, get as close to threshold as possible, etc.); it simply accumulates inputs in order
until the threshold is met.

If threshold is 0, the first address in the key range with a non-zero balance will be
returned (if it exists).

If threshold is None (default), this method will return all inputs in the specified key
range.

7.6. get_inputs 73

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getbundle

PyOTA Documentation

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'inputs': List[Address],

Addresses with nonzero balances that can be used
as inputs.

'totalBalance': int,
Aggregate balance from all matching addresses.

}

Note that each Address in the result has its Address.balance attribute set.

Example:

response = iota.get_inputs(...)

input0 = response['inputs'][0] # type: Address
input0.balance # 42

Raise

• iota.adapter.BadApiResponse if threshold is not met. Not applicable if
threshold is None.

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getinputs

async AsyncIota.get_inputs(start: int = 0, stop: Optional[int] = None, threshold: Optional[int] =
None, security_level: Optional[int] = None)→ dict

Gets all possible inputs of a seed and returns them, along with the total balance.

This is either done deterministically (by generating all addresses until find_transactions() returns an
empty result), or by providing a key range to search.

Parameters

• start (int) – Starting key index. Defaults to 0.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will not stop until it finds an unused address.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the correct inputs with stop being None.

74 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getinputs

PyOTA Documentation

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking for inputs and where to stop.

• threshold (Optional[int]) – If set, determines the minimum threshold for a suc-
cessful result:

– As soon as this threshold is reached, iteration will stop.

– If the command runs out of addresses before the threshold is reached, an exception is
raised.

Note: This method does not attempt to “optimize” the result (e.g., smallest number of
inputs, get as close to threshold as possible, etc.); it simply accumulates inputs in order
until the threshold is met.

If threshold is 0, the first address in the key range with a non-zero balance will be
returned (if it exists).

If threshold is None (default), this method will return all inputs in the specified key
range.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'inputs': List[Address],

Addresses with nonzero balances that can be used
as inputs.

'totalBalance': int,
Aggregate balance from all matching addresses.

}

Note that each Address in the result has its Address.balance attribute set.

Example:

response = iota.get_inputs(...)

input0 = response['inputs'][0] # type: Address
input0.balance # 42

Raise

• iota.adapter.BadApiResponse if threshold is not met. Not applicable if
threshold is None.

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getinputs

7.6. get_inputs 75

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getinputs

PyOTA Documentation

7.7 get_new_addresses

Iota.get_new_addresses(index: int = 0, count: int = 1, security_level: int = 2, checksum: bool =
False)

Generates one or more new addresses from the seed.

Parameters

• index (int) – The key index of the first new address to generate (must be >= 0).

• count (int) – Number of addresses to generate (must be >= 1).

Tip: This is more efficient than calling get_new_addresses() inside a loop.

If None, this method will progressively generate addresses and scan the Tangle until it finds
one that has no transactions referencing it and was never spent from.

Note: A snapshot removes transactions from the Tangle. As a consequence, after a snap-
shot, it may happen that when count is None, this API call returns a “new” address that
used to have transactions before the snapshot. As a workaround, you can save your used
addresses and their key_index attribute in a local database. Use the index parameter to
tell the API from where to start generating and checking new addresses.

• security_level (int) – Number of iterations to use when generating new addresses.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

• checksum (bool) – Specify whether to return the address with the checksum. Defaults to
False.

Returns

dict with the following structure:

{
'addresses': List[Address],

Always a list, even if only one address was
generated.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getnewaddress

async AsyncIota.get_new_addresses(index: int = 0, count: int = 1, security_level: int = 2, check-
sum: bool = False)

Generates one or more new addresses from the seed.

Parameters

• index (int) – The key index of the first new address to generate (must be >= 0).

• count (int) – Number of addresses to generate (must be >= 1).

Tip: This is more efficient than calling get_new_addresses() inside a loop.

76 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getnewaddress

PyOTA Documentation

If None, this method will progressively generate addresses and scan the Tangle until it finds
one that has no transactions referencing it and was never spent from.

Note: A snapshot removes transactions from the Tangle. As a consequence, after a snap-
shot, it may happen that when count is None, this API call returns a “new” address that
used to have transactions before the snapshot. As a workaround, you can save your used
addresses and their key_index attribute in a local database. Use the index parameter to
tell the API from where to start generating and checking new addresses.

• security_level (int) – Number of iterations to use when generating new addresses.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

• checksum (bool) – Specify whether to return the address with the checksum. Defaults to
False.

Returns

dict with the following structure:

{
'addresses': List[Address],

Always a list, even if only one address was
generated.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getnewaddress

7.8 get_transaction_objects

Iota.get_transaction_objects(hashes: [typing.Iterable[iota.transaction.types.TransactionHash]])
→ dict

Fetches transaction objects from the Tangle given their transaction IDs (hashes).

Effectively, this is get_trytes() + converting the trytes into transaction objects.

Similar to find_transaction_objects(), but accepts list of transaction hashes as input.

Parameters hashes (Iterable[TransactionHash]) – List of transaction IDs (transaction
hashes).

Returns

dict with the following structure:

{
'transactions': List[Transaction],

List of Transaction objects that match the input.
}

async AsyncIota.get_transaction_objects(hashes: [typing.Iterable[iota.transaction.types.TransactionHash]])
→ dict

Fetches transaction objects from the Tangle given their transaction IDs (hashes).

Effectively, this is get_trytes() + converting the trytes into transaction objects.

7.8. get_transaction_objects 77

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getnewaddress

PyOTA Documentation

Similar to find_transaction_objects(), but accepts list of transaction hashes as input.

Parameters hashes (Iterable[TransactionHash]) – List of transaction IDs (transaction
hashes).

Returns

dict with the following structure:

{
'transactions': List[Transaction],

List of Transaction objects that match the input.
}

7.9 get_transfers

Iota.get_transfers(start: int = 0, stop: Optional[int] = None, inclusion_states: bool = False)→ dict
Returns all transfers associated with the seed.

Parameters

• start (int) – Starting key index.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will check every address until it finds one that is unused.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the expected transfers with stop being None.

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking for transfers and where to stop.

• inclusion_states (bool) – Whether to also fetch the inclusion states of the transfers.

This requires an additional API call to the node, so it is disabled by default.

Returns

dict with the following structure:

{
'bundles': List[Bundle],

Matching bundles, sorted by tail transaction
timestamp.

This value is always a list, even if only one
bundle was found.

}

References:

78 Chapter 7. Extended API Methods

PyOTA Documentation

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#gettransfers

async AsyncIota.get_transfers(start: int = 0, stop: Optional[int] = None, inclusion_states: bool
= False)→ dict

Returns all transfers associated with the seed.

Parameters

• start (int) – Starting key index.

• stop (Optional[int]) – Stop before this index.

Note that this parameter behaves like the stop attribute in a slice object; the stop index
is not included in the result.

If None (default), then this method will check every address until it finds one that is unused.

Note: An unused address is an address that has not been spent from and has no transac-
tions referencing it on the Tangle.

A snapshot removes transactions from the Tangle. As a consequence, after a snapshot, it
may happen that this API does not return the expected transfers with stop being None.

As a workaround, you can save your used addresses and their key_index attribute in a
local database. Use the start and stop parameters to tell the API from where to start
checking for transfers and where to stop.

• inclusion_states (bool) – Whether to also fetch the inclusion states of the transfers.

This requires an additional API call to the node, so it is disabled by default.

Returns

dict with the following structure:

{
'bundles': List[Bundle],

Matching bundles, sorted by tail transaction
timestamp.

This value is always a list, even if only one
bundle was found.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#gettransfers

7.10 is_confirmed

Iota.is_confirmed(transactions: Iterable[iota.transaction.types.TransactionHash])→ dict
Get the inclusion states of a set of transactions. This is for determining if a transaction was accepted and
confirmed by the network or not.

Parameters transactions (Iterable[TransactionHash]) – List of transactions you
want to get the inclusion state for.

Returns

dict with the following structure:

7.10. is_confirmed 79

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#gettransfers
https://github.com/iotaledger/wiki/blob/master/api-proposal.md#gettransfers

PyOTA Documentation

{
'states': List[bool],

List of boolean values in the same order as the
transactions parameters. A ``True`` value means the
transaction was confirmed.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

async AsyncIota.is_confirmed(transactions: Iterable[iota.transaction.types.TransactionHash])→
dict

Get the inclusion states of a set of transactions. This is for determining if a transaction was accepted and
confirmed by the network or not.

Parameters transactions (Iterable[TransactionHash]) – List of transactions you
want to get the inclusion state for.

Returns

dict with the following structure:

{
'states': List[bool],

List of boolean values in the same order as the
transactions parameters. A ``True`` value means the
transaction was confirmed.

'duration': int,
Number of milliseconds it took to process the request.

}

References:

• https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

7.11 is_promotable

Iota.is_promotable(tails: Iterable[iota.transaction.types.TransactionHash])→ dict
Checks if tail transaction(s) is promotable by calling check_consistency() and verifying that
attachmentTimestamp is above a lower bound. Lower bound is calculated based on number of milestones
issued since transaction attachment.

Parameters tails (Iterable(TransactionHash)) – List of tail transaction hashes.

Returns

The return type mimics that of check_consistency(). dict with the following structure:

{
'promotable': bool,

If ``True``, all tails are promotable. If ``False``, see
`info` field.

'info': Optional(List[str])
If `promotable` is ``False``, this contains info about what

(continues on next page)

80 Chapter 7. Extended API Methods

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates
https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference#getinclusionstates

PyOTA Documentation

(continued from previous page)

went wrong.
Note that when 'promotable' is ``True``, 'info' does not
exist.

}

References: - https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.isPromotable

async AsyncIota.is_promotable(tails: Iterable[iota.transaction.types.TransactionHash])→ dict
Checks if tail transaction(s) is promotable by calling check_consistency() and verifying that
attachmentTimestamp is above a lower bound. Lower bound is calculated based on number of milestones
issued since transaction attachment.

Parameters tails (Iterable(TransactionHash)) – List of tail transaction hashes.

Returns

The return type mimics that of check_consistency(). dict with the following structure:

{
'promotable': bool,

If ``True``, all tails are promotable. If ``False``, see
`info` field.

'info': Optional(List[str])
If `promotable` is ``False``, this contains info about what
went wrong.
Note that when 'promotable' is ``True``, 'info' does not
exist.

}

References: - https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.isPromotable

7.12 is_reattachable

Iota.is_reattachable(addresses: Iterable[iota.types.Address])→ dict
This API function helps you to determine whether you should replay a transaction or make a new one (either
with the same input, or a different one).

This method takes one or more input addresses (i.e. from spent transactions) as input and then checks whether
any transactions with a value transferred are confirmed.

If yes, it means that this input address has already been successfully used in a different transaction, and as such
you should no longer replay the transaction.

Parameters addresses (Iterable[Address]) – List of addresses.

Returns

dict with the following structure:

{
'reattachable': List[bool],
Always a list, even if only one address was queried.

}

7.12. is_reattachable 81

https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.isPromotable
https://github.com/iotaledger/iota.js/blob/next/api_reference.md#module_core.isPromotable

PyOTA Documentation

async AsyncIota.is_reattachable(addresses: Iterable[iota.types.Address])→ dict
This API function helps you to determine whether you should replay a transaction or make a new one (either
with the same input, or a different one).

This method takes one or more input addresses (i.e. from spent transactions) as input and then checks whether
any transactions with a value transferred are confirmed.

If yes, it means that this input address has already been successfully used in a different transaction, and as such
you should no longer replay the transaction.

Parameters addresses (Iterable[Address]) – List of addresses.

Returns

dict with the following structure:

{
'reattachable': List[bool],
Always a list, even if only one address was queried.

}

7.13 prepare_transfer

Iota.prepare_transfer(transfers: Iterable[iota.transaction.creation.ProposedTransaction], inputs:
Optional[Iterable[iota.types.Address]] = None, change_address: Op-
tional[iota.types.Address] = None, security_level: Optional[int] = None) →
dict

Prepares transactions to be broadcast to the Tangle, by generating the correct bundle, as well as choosing and
signing the inputs (for value transfers).

Parameters

• transfers (Iterable[ProposedTransaction]) – Transaction objects to pre-
pare.

• inputs (Optional[Iterable[Address]]) – List of addresses used to fund the
transfer. Ignored for zero-value transfers.

If not provided, addresses will be selected automatically by scanning the Tangle for unspent
inputs. Depending on how many transfers you’ve already sent with your seed, this process
could take awhile.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If not specified, a change address will be generated automatically.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

82 Chapter 7. Extended API Methods

PyOTA Documentation

{
'trytes': List[TransactionTrytes],

Raw trytes for the transactions in the bundle,
ready to be provided to :py:meth:`send_trytes`.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#preparetransfers

async AsyncIota.prepare_transfer(transfers: Iterable[iota.transaction.creation.ProposedTransaction],
inputs: Optional[Iterable[iota.types.Address]] = None,
change_address: Optional[iota.types.Address] = None,
security_level: Optional[int] = None)→ dict

Prepares transactions to be broadcast to the Tangle, by generating the correct bundle, as well as choosing and
signing the inputs (for value transfers).

Parameters

• transfers (Iterable[ProposedTransaction]) – Transaction objects to pre-
pare.

• inputs (Optional[Iterable[Address]]) – List of addresses used to fund the
transfer. Ignored for zero-value transfers.

If not provided, addresses will be selected automatically by scanning the Tangle for unspent
inputs. Depending on how many transfers you’ve already sent with your seed, this process
could take awhile.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If not specified, a change address will be generated automatically.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Raw trytes for the transactions in the bundle,
ready to be provided to :py:meth:`send_trytes`.

}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#preparetransfers

7.13. prepare_transfer 83

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#preparetransfers
https://github.com/iotaledger/wiki/blob/master/api-proposal.md#preparetransfers

PyOTA Documentation

7.14 promote_transaction

Iota.promote_transaction(transaction: iota.transaction.types.TransactionHash, depth: int = 3,
min_weight_magnitude: Optional[int] = None)→ dict

Promotes a transaction by adding spam on top of it.

Parameters

• transaction (TransactionHash) – Transaction hash. Must be a tail transaction.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'bundle': Bundle,

The newly-published bundle.
}

async AsyncIota.promote_transaction(transaction: iota.transaction.types.TransactionHash,
depth: int = 3, min_weight_magnitude: Optional[int] =
None)→ dict

Promotes a transaction by adding spam on top of it.

Parameters

• transaction (TransactionHash) – Transaction hash. Must be a tail transaction.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'bundle': Bundle,

The newly-published bundle.
}

84 Chapter 7. Extended API Methods

PyOTA Documentation

7.15 replay_bundle

Iota.replay_bundle(transaction: iota.transaction.types.TransactionHash, depth: int = 3,
min_weight_magnitude: Optional[int] = None)→ dict

Takes a tail transaction hash as input, gets the bundle associated with the transaction and then replays the bundle
by attaching it to the Tangle.

Parameters

• transaction (TransactionHash) – Transaction hash. Must be a tail.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Raw trytes that were published to the Tangle.
}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#replaytransfer

async AsyncIota.replay_bundle(transaction: iota.transaction.types.TransactionHash, depth: int =
3, min_weight_magnitude: Optional[int] = None)→ dict

Takes a tail transaction hash as input, gets the bundle associated with the transaction and then replays the bundle
by attaching it to the Tangle.

Parameters

• transaction (TransactionHash) – Transaction hash. Must be a tail.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Raw trytes that were published to the Tangle.
}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#replaytransfer

7.15. replay_bundle 85

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#replaytransfer
https://github.com/iotaledger/wiki/blob/master/api-proposal.md#replaytransfer

PyOTA Documentation

7.16 send_transfer

Iota.send_transfer(transfers: Iterable[iota.transaction.creation.ProposedTransaction], depth: int =
3, inputs: Optional[Iterable[iota.types.Address]] = None, change_address: Op-
tional[iota.types.Address] = None, min_weight_magnitude: Optional[int] = None,
security_level: Optional[int] = None)→ dict

Prepares a set of transfers and creates the bundle, then attaches the bundle to the Tangle, and broadcasts and
stores the transactions.

Parameters

• transfers (Iterable[ProposedTransaction]) – Transfers to include in the
bundle.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• inputs (Optional[Iterable[Address]]) – List of inputs used to fund the trans-
fer. Not needed for zero-value transfers.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If not specified, a change address will be generated automatically.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'bundle': Bundle,

The newly-published bundle.
}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtransfer

async AsyncIota.send_transfer(transfers: Iterable[iota.transaction.creation.ProposedTransaction],
depth: int = 3, inputs: Optional[Iterable[iota.types.Address]]
= None, change_address: Optional[iota.types.Address] = None,
min_weight_magnitude: Optional[int] = None, security_level:
Optional[int] = None)→ dict

Prepares a set of transfers and creates the bundle, then attaches the bundle to the Tangle, and broadcasts and
stores the transactions.

Parameters

• transfers (Iterable[ProposedTransaction]) – Transfers to include in the
bundle.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

86 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtransfer

PyOTA Documentation

• inputs (Optional[Iterable[Address]]) – List of inputs used to fund the trans-
fer. Not needed for zero-value transfers.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If not specified, a change address will be generated automatically.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

• security_level (Optional[int]) – Number of iterations to use when generating
new addresses (see get_new_addresses()).

This value must be between 1 and 3, inclusive.

If not set, defaults to AddressGenerator.DEFAULT_SECURITY_LEVEL.

Returns

dict with the following structure:

{
'bundle': Bundle,

The newly-published bundle.
}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtransfer

7.17 send_trytes

Iota.send_trytes(trytes: Iterable[iota.transaction.types.TransactionTrytes], depth: int = 3,
min_weight_magnitude: Optional[int] = None)→ dict

Attaches transaction trytes to the Tangle, then broadcasts and stores them.

Parameters

• trytes (Iterable[TransactionTrytes]) – Transaction encoded as a tryte se-
quence.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Raw trytes that were published to the Tangle.
}

References:

7.17. send_trytes 87

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtransfer

PyOTA Documentation

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtrytes

async AsyncIota.send_trytes(trytes: Iterable[iota.transaction.types.TransactionTrytes], depth: int
= 3, min_weight_magnitude: Optional[int] = None)→ dict

Attaches transaction trytes to the Tangle, then broadcasts and stores them.

Parameters

• trytes (Iterable[TransactionTrytes]) – Transaction encoded as a tryte se-
quence.

• depth (int) – Depth at which to attach the bundle. Defaults to 3.

• min_weight_magnitude (Optional[int]) – Min weight magnitude, used by the
node to calibrate Proof of Work.

If not provided, a default value will be used.

Returns

dict with the following structure:

{
'trytes': List[TransactionTrytes],

Raw trytes that were published to the Tangle.
}

References:

• https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtrytes

7.18 traverse_bundle

Iota.traverse_bundle(tail_hash: iota.transaction.types.TransactionHash)→ dict
Fetches and traverses a bundle from the Tangle given a tail transaction hash. Recursively traverse the Tangle,
collecting transactions until we hit a new bundle.

This method is (usually) faster than find_transactions(), and it ensures we don’t collect transactions
from replayed bundles.

Parameters tail_hash (TransactionHash) – Tail transaction hash of the bundle.

Returns

dict with the following structure:

{
'bundle': List[Bundle],

List of matching bundles. Note that this value is
always a list, even if only one bundle was found.

}

async AsyncIota.traverse_bundle(tail_hash: iota.transaction.types.TransactionHash)→ dict
Fetches and traverses a bundle from the Tangle given a tail transaction hash. Recursively traverse the Tangle,
collecting transactions until we hit a new bundle.

This method is (usually) faster than find_transactions(), and it ensures we don’t collect transactions
from replayed bundles.

Parameters tail_hash (TransactionHash) – Tail transaction hash of the bundle.

88 Chapter 7. Extended API Methods

https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtrytes
https://github.com/iotaledger/wiki/blob/master/api-proposal.md#sendtrytes

PyOTA Documentation

Returns

dict with the following structure:

{
'bundle': List[Bundle],

List of matching bundles. Note that this value is
always a list, even if only one bundle was found.

}

7.18. traverse_bundle 89

PyOTA Documentation

90 Chapter 7. Extended API Methods

CHAPTER

EIGHT

GENERATING ADDRESSES

In IOTA, addresses are generated deterministically from seeds. This ensures that your account can be accessed from
any location, as long as you have the seed.

Warning: Note that this also means that anyone with access to your seed can spend your iotas! Treat your seed(s)
the same as you would the password for any other financial service.

Note: PyOTA’s crytpo functionality is currently very slow; on average it takes 8-10 seconds to generate each address.

These performance issues will be fixed in a future version of the library; please bear with us!

In the meantime, you can install a C extension that boosts PyOTA’s performance significantly (speedups
of 60x are common!).

To install the extension, run pip install pyota[ccurl].

8.1 Algorithm

Fig. 1: Deriving addresses from a seed.

The following process takes place when you generate addresses in IOTA:

1. First, a sub-seed is derived from your seed by adding index to it, and hashing it once with the Kerl hash
function.

2. Then the sub-seed is absorbed and squeezed in a sponge function 27 times for each security level. The result is
a private key that varies in length depending on security level.

Note: A private key with security_level = 1 consists of 2187 trytes, which is exactly 27 x 81 trytes.
As the security level increases, so does the length of the private key: 2 x 2187 trytes for security_level =
2, and 3 x 2187 trytes for security_level = 3.

3. A private key is split into 81-tryte segments, and these segments are hashed 26 times. A group of 27 hashed
segments is called a key fragment. Observe, that a private key has one key fragment for each security level.

4. Each key fragment is hashed once more to generate key digests, that are combined and hashed once more to get
the 81-tryte address.

91

https://github.com/iotaledger/kerl
https://keccak.team/sponge_duplex.html

PyOTA Documentation

Note: An address is the public key pair of the corresponding private key. When you spend iotas from an
address, you need to sign the transaction with a key digest that was generated from the address’s corresponing
private key. This way you prove that you own the funds on that address.

PyOTA provides two methods for generating addresses:

8.2 Using the API

from iota import Iota

api = Iota('http://localhost:14265', b'SEED9GOES9HERE')

Generate 5 addresses, starting with index 0.
gna_result = api.get_new_addresses(count=5)
Result is a dict that contains a list of addresses.
addresses = gna_result['addresses']

Generate 1 address, starting with index 42:
gna_result = api.get_new_addresses(index=42)
addresses = gna_result['addresses']

Find the first unused address, starting with index 86:
gna_result = api.get_new_addresses(index=86, count=None)
addresses = gna_result['addresses']

To generate addresses using the API, invoke its iota.Iota.get_new_addresses() method, using the follow-
ing parameters:

• index: int: The starting index (defaults to 0). This can be used to skip over addresses that have already
been generated.

• count: Optional[int]: The number of addresses to generate (defaults to 1).

– If None, the API will generate addresses until it finds one that has not been used (has no transactions
associated with it on the Tangle and was never spent from). It will then return the unused address and
discard the rest.

• security_level: int: Determines the security level of the generated addresses. See Security Levels
below.

Depending on the count parameter, Iota.get_new_addresses() can be operated in two modes.

8.2.1 Offline mode

When count is greater than 0, the API generates count number of addresses starting from index. It
does not check the Tangle if addresses were used or spent from before.

92 Chapter 8. Generating Addresses

PyOTA Documentation

8.2.2 Online mode

When count is None, the API starts generating addresses starting from index. Then, for each gener-
ated address, it checks the Tangle if the address has any transactions associated with it, or if the address
was ever spent from. If both of the former checks return “no”, address generation stops and the address is
returned (a new address is found).

Warning: Take care when using the online mode after a snapshot. Transactions referencing a generated address
may have been pruned from a node’s ledger, therefore the API could return an already-used address as “new” (note:
The snapshot has no effect on the “was ever spent from” check).

To make your application more robust to handle snapshots, it is recommended that you keep a local database with
at least the indices of your used addresses. After a snapshot, you could specify index parameter as the last index
in your local used addresses database, and keep on generating truly new addresses.

PyOTA is planned to receive the account module in the future, that makes the library stateful and hence would
solve the issue mentioned above.

8.3 Using AddressGenerator

from iota.crypto.addresses import AddressGenerator

generator = AddressGenerator(b'SEED9GOES9HERE')

Generate a list of addresses:
addresses = generator.get_addresses(start=0, count=5)

Generate a list of addresses in reverse order:
addresses = generator.get_addresses(start=42, count=10, step=-1)

Create an iterator, advancing 5 indices each iteration.
iterator = generator.create_iterator(start=86, step=5)
for address in iterator:
...

If you want more control over how addresses are generated, you can use iota.crypto.addresses.
AddressGenerator.

AddressGenerator can create iterators, allowing your application to generate addresses as needed, instead of
having to generate lots of addresses up front.

You can also specify an optional step parameter, which allows you to skip over multiple addresses between itera-
tions. . . or even iterate over addresses in reverse order!

8.3. Using AddressGenerator 93

https://docs.iota.org/docs/client-libraries/0.1/account-module/introduction/overview

PyOTA Documentation

8.3.1 AddressGenerator

class iota.crypto.addresses.AddressGenerator(seed: Union[AnyStr, bytearray, Try-
teString], security_level: int = 2, checksum:
bool = False)

Generates new addresses using a standard algorithm.

Note: This class does not check if addresses have already been used; if you want to exclude used addresses,
invoke iota.Iota.get_new_addresses() instead.

Note also that iota.Iota.get_new_addresses() uses AddressGenerator internally, so you get
the best of both worlds when you use the API (:

Parameters

• seed (TrytesCompatible) – The seed to derive addresses from.

• security_level (int) – When generating a new address, you can specify a security
level for it. The security level of an address affects how long the private key is, how secure
a spent address is against brute-force attacks, and how many transactions are needed to
contain the signature.

Could be either 1, 2 or 3.

Reference:

– https://docs.iota.org/docs/getting-started/0.1/clients/security-levels

• checksum (bool) – Whether to generate address with or without checksum.

Returns iota.crypto.addresses.AddressGenerator object.

get_addresses

AddressGenerator.get_addresses(start: int, count: int = 1, step: int = 1) →
List[iota.types.Address]

Generates and returns one or more addresses at the specified index(es).

This is a one-time operation; if you want to create lots of addresses across multiple contexts, consider invoking
create_iterator() and sharing the resulting generator object instead.

Warning: This method may take awhile to run if the starting index and/or the number of requested addresses
is a large number!

Parameters

• start (int) – Starting index. Must be >= 0.

• count (int) – Number of addresses to generate. Must be > 0.

• step (int) – Number of indexes to advance after each address. This may be any non-zero
(positive or negative) integer.

Returns

List[Address]

Always returns a list, even if only one address is generated.

94 Chapter 8. Generating Addresses

https://docs.iota.org/docs/getting-started/0.1/clients/security-levels

PyOTA Documentation

The returned list will contain count addresses, except when step * count < start
(only applies when step is negative).

Raises ValueError –

• if count is lower than 1.

• if step is zero.

create_iterator

AddressGenerator.create_iterator(start: int = 0, step: int = 1)→ Generator[iota.types.Address,
None, None]

Creates an iterator that can be used to progressively generate new addresses.

Returns an iterator that will create addresses endlessly. Use this if you have a feature that needs to generate
addresses “on demand”.

Parameters

• start (int) – Starting index.

Warning: This method may take awhile to reset if start is a large number!

• step (int) – Number of indexes to advance after each address.

Warning: The generator may take awhile to advance between iterations if step is a
large number!

Returns Generator[Address, None, None] object that you can iterate to generate ad-
dresses.

8.4 Security Levels

gna_result = api.get_new_addresses(security_level=3)

generator =\
AddressGenerator(
seed = b'SEED9GOES9HERE',
security_level = 3,

)

If desired, you may change the number of iterations that iota.crypto.addresses.AddressGenerator
or iota.Iota.get_new_addresses uses internally when generating new addresses, by specifying a different
security_level when creating a new instance.

security_level should be between 1 and 3, inclusive. Values outside this range are not supported by the IOTA
protocol.

Use the following guide when deciding which security level to use:

• security_level=1: Least secure, but generates addresses the fastest.

• security_level=2: Default; good compromise between speed and security.

8.4. Security Levels 95

PyOTA Documentation

• security_level=3: Most secure; results in longer signatures in transactions.

96 Chapter 8. Generating Addresses

CHAPTER

NINE

CREATING TRANSFERS

IOTA is a permissionless DLT solution, therefore anyone can send transactions to the network and initiate transfers.
The IOTA client libraries help you to abstract away low-level operations required to construct and send a transfer to
the Tangle.

In this section, we will explore in depth how to create transactions and bundles with IOTA, furthermore what tools you
can use in PyOTA to ease your development process.

Note: Before proceeding, make sure you read and understood the Basic Concepts and PyOTA Types sections!

9.1 Anatomy of a Transfer

We already know that the Tangle consists of transactions referencing each other, each of them two others to be more
precise. Transactions can be grouped together in bundles. Zero-value bundles contain only zero value transactions,
while transfer bundles may also contain input and output transactions.

But how to construct these bundles and send them to the network?

The process can be boiled down to 5 steps:

1. Create individual transaction(s).

2. Construct a bundle from the transaction(s).

3. Obtain references to two unconfirmed transactions (“tips”) from the Tangle.

4. Do proof-of-work for each transaction in the bundle.

5. Send the bundle to the network.

Fig. 1: Process of creating and sending a transfer to the Tangle.

97

https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#zero-value-bundle
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#transfer-bundles

PyOTA Documentation

9.1.1 1. Create Transactions

The first step is to create the individual transaction objects. You have to specify address and value for each
transaction. Furthermore, you can define a tag, and for zero-value transactions, a message. A timestamp is also
required, though this value is usually auto-generated by the IOTA libraries.

Note: Unlike on other decentralised ledgers, IOTA transactions can have positive or negative value amounts. In
order to send iotas from one address to another, at least two transactions are required:

• one with positive value (to increment the balance of the receiver), and

• one with negative value (to decrement the balance of the sender).

In PyOTA, use ProposedTransaction to declare transactions.

9.1.2 2. Create Bundle from Transactions

A bundle is a collection of transactions, treated as an atomic unit when sent to the network. A bundle makes a value
(iota token) transfer possible by grouping together input and output transactions.

A bundle always has to be balanced: the sum of value attributes of the transactions in the bundle should always be
zero. Transactions in the bundle are also indexed individually and contain information on how many other transactions
there are in the bundle.

Once complete, a bundle has to be finalized to generate the bundle hash based on the bundle essence. The bundle hash
is the unique identifier of the bundle.

After finalization, input transactions in the bundle need to be signed to prove ownership of iotas being transferred.

Tip: ProposedBundle helps you in PyOTA to create bundles, add transactions, finalize the bundle and sign the
inputs. We’ll see how to use ProposedBundle in Use the Library below.

9.1.3 3. Select two tips

Tips are transactions that are yet to be confirmed by the network. We can obtain two tips by requesting them from
a node. In PyOTA, get_transactions_to_approve() does the job: it returns a trunk and a branch
TransactionHash.

Because our bundle references these two transactions, it will validate them once it is added to the Tangle.

9.1.4 4. Do Proof-of-Work

The bundle has been finalized, inputs have been signed, and we have two tips; now it’s time to prepare the bundle to
be attached to the Tangle. As noted in the previous section, every transaction references two other transactions in the
Tangle; therefore we need to select these references for each transaction in our bundle.

We also know that transactions within the bundle are linked together through their trunk references. So how do we
construct the correct bundle structure and also reference two tips from the network?

For all non-head transactions in the bundle, the trunk reference is the next transaction in the bundle, while the branch
reference is the trunk transaction hash, one of the tips.

The head transaction is different: the trunk reference is the trunk tip, while the branch reference is the branch tip.

98 Chapter 9. Creating transfers

https://docs.iota.org/docs/getting-started/0.1/transactions/bundles#bundle-essence
https://docs.iota.org/docs/getting-started/0.1/transactions/bundles

PyOTA Documentation

Fig. 2: Structure of a bundle with four transactions. Numbers in brackets denote (currentIndex, lastIndex)
fields. Head of the bundle has index 3, while tail has index 0.

The proof-of-work calculation has to be done for each transaction individually, therefore the more transactions you
have in the bundle, the more time it will take. The difficulty of the calculation also depends on the minimum weight
magnitude set by the network.

The output of the proof-of-work algorithm is a nonce value that is appended to the the transaction, resulting in the
attached transaction trytes. Nodes validate the proof-of-work of a transaction by calculating the transaction’s hash
from the attached transaction trytes. If the resulting hash has at least minimum weight magnitude number of
trailing zero trits, the transaction is valid.

In PyOTA, use attach_to_tangle() to carry out this step.

9.1.5 5. Broadcast and Store

The final step is to send the bundle to the network. Nodes will broadcast the transactions in the network, and store
them in their local database.

In PyOTA, use broadcast_and_store() to achieve this.

Observe the bird’s-eye view of the Tangle depicted at the last step of the process. Our transactions are part of the
Tangle, referencing each other and the two tips. Newer transactions may reference our transactions as branch or trunk.

Note: As more transactions are added to the Tangle that reference our transactions – and then more are added that
reference those transactions, and so on – this increases the cumulative weight of our transactions. The higher the
cumulative weight of our transactions, the higher the chance for them to get confirmed.

9.1. Anatomy of a Transfer 99

https://docs.iota.org/docs/getting-started/0.1/network/minimum-weight-magnitude
https://docs.iota.org/docs/getting-started/0.1/network/minimum-weight-magnitude
https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80

PyOTA Documentation

9.2 Use the Library

The IOTA libraries help you to abstract away the low-level operations needed to create transfers. The figure below
illustrates the different ways you can build and send a transfer.

Fig. 3: API commands for sending transfers.

Let’s look at some code snippets on how to perform the above with an imaginary bundle that has 3 fictional transactions.

9.2.1 1. Level Padawan

The easiest and most convenient way is to use send_transfer() extended API method. You still need to create
the transactions yourself with ProposedTransaction.

from iota import Iota, ProposedTransaction, Address

api = Iota('https://nodes.devnet.iota.org:443')

fictional_transactions = [
ProposedTransaction(

address=Address(b'FIRSTRANDOMADDRESS'),
value=0,
You could add a tag or message here too!

),
ProposedTransaction(

address=Address(b'SECONDRANDOMADDRESS'),
value=0,

),
ProposedTransaction(

address=Address(b'THIRDRANDOMADDRESS'),
value=0,

)
]

imaginary_bundle = api.send_transfer(
transfers=fictional_transactions

)['bundle']

As all API methods in PyOTA, send_transfer() also returns a dict. The bundle key holds the value of
Bundle.

It’s important to note, that for value transfers, you will need your seed as well. send_transfer() will look for
input addresses to fund outgoing transactions in the bundle, and auto-generate an unused change address
if there is a remainder amount of tokens. It will also take care of finalizing the bundle and signing the necessary input
transactions.

100 Chapter 9. Creating transfers

PyOTA Documentation

9.2.2 2. Level Obi-Wan

Instead of send_transfer(), you can use the combination of prepare_transfer() and send_trytes()
to achieve the same result.

Tip: This can be useful if you want to prepare the transactions (including signing inputs) on one device, but
you want to then transfer the data to another device for transmission to the Tangle. For example, you might
prepare_transfer() on an air-gapped computer that has your seed stored on it, but then transfer the result-
ing trytes to a networked computer (that does not have your seed) to send_trytes().

from iota import Iota, ProposedTransaction, Address

api = Iota('https://nodes.devnet.iota.org:443')

transactions = [
ProposedTransaction(

address=Address(b'FIRSTRANDOMADDRESS'),
value=0,

),
ProposedTransaction(

address=Address(b'SECONDRANDOMADDRESS'),
value=0,

),
ProposedTransaction(

address=Address(b'THIRDRANDOMADDRESS'),
value=0,

)
]

prepared_trytes = api.prepare_transfer(
transfers=transactions

)['trytes']

imaginary_bundle_trytes = api.send_trytes(
trytes=prepared_trytes

)['trytes']

A difference here is that the end result, imaginary_bundle_trytes is a list of TransactionTrytes, and
not a Bundle object.

9.2.3 3. Level Yoda

Being the master Jedi of the PyOTA universe means that you know the most about the force of low-level API methods.
Use it wisely!

Tip: You generally won’t need to split out the process explicitly like this in your application code, but it is useful
to understand what send_transfer() does under-the-hood, so that you are better-equipped to troubleshoot any
issues that may occur during the process.

from iota import Iota, ProposedTransaction, Address, ProposedBundle

api = Iota('https://nodes.devnet.iota.org:443')

(continues on next page)

9.2. Use the Library 101

PyOTA Documentation

(continued from previous page)

transactions = [
ProposedTransaction(

address=Address(b'FIRSTRANDOMADDRESS'),
value=0,

),
ProposedTransaction(

address=Address(b'SECONDRANDOMADDRESS'),
value=0,

),
ProposedTransaction(

address=Address(b'THIRDRANDOMADDRESS'),
value=0,

)
]

bundle = ProposedBundle()

for tx in transactions:
bundle.add_transaction(tx)

If it was a value transfer, we would also need to:
bundle.add_inputs()
bundle.send_unspent_inputs_to()

bundle.finalize()

Again, for value transfers, we would need to:
bundle.sign_inputs(KeyGenerator(b'SEEDGOESHERE'))

gtta_response = api.get_transactions_to_approve(depth=3)

trunk = gtta_response['trunkTransaction']
branch = gtta_response['branchTransaction']

attached_trytes = api.attach_to_tangle(
trunk_transaction=trunk,
branch_transaction=branch,
trytes=bundle.as_tryte_strings()

)['trytes']

api.broadcast_transactions(attached_trytes)

api.store_transactions(attached_trytes)

imaginary_bundle = Bundle.from_tryte_strings(attached_trytes)

102 Chapter 9. Creating transfers

CHAPTER

TEN

MULTISIGNATURE

Multisignature transactions are transactions which require multiple signatures before execution. In simplest example
it means that, if there is token wallet which require 5 signatures from different parties, all 5 parties must sign spent
transaction, before it will be processed.

It is standard functionality in blockchain systems and it is also implemented in IOTA.

Note: You can read more about IOTA multisignature on the wiki.

First, we will take a look on what Multisig API (s) you can use, and what PyOTA Multisignature Types are there for
you if the standard API is not enough for your application and you want to take more control.

Starting from Generating multisignature address, a tutorial follows to show you how to use the multisignature API to
execute multisig transfers. The complete source code for the tutorial can be found here.

10.1 Multisig API

The multisignature API builds on top of the extended API to add multisignature features. Just like for the regular APIs,
there is both a synchronous and an asynchronous version of the multisignature API, however, as there is no networking
required during the multisignature API calls, the difference between them is only how you can call them.

10.1.1 Synchronous Multisignature API Class

class iota.multisig.MultisigIota(adapter: Union[str, BaseAdapter], seed: Union[AnyStr,
bytearray, TryteString, None] = None, devnet: bool = False,
local_pow: bool = False)

Extends the IOTA API so that it can send multi-signature transactions. Synchronous API.

Caution: Make sure you understand how multisig works before attempting to use it. If you are not careful,
you could easily compromise the security of your private keys, send IOTAs to unspendable addresses, etc.

Example Usage:

Import API class
from iota.multisig import MultisigIota

Declare a multisig API instance
api = MultisigIota(

(continues on next page)

103

https://github.com/iotaledger/wiki/blob/master/multisigs.md
https://github.com/iotaledger/iota.py/blob/master/examples/multisig.py

PyOTA Documentation

(continued from previous page)

adapter = 'http://localhost:14265',

seed =
Seed(

b'TESTVALUE9DONTUSEINPRODUCTION99999JYFRTI'
b'WMKVVBAIEIYZDWLUVOYTZBKPKLLUMPDF9PPFLO9KT',

),
)

response = api.get_digests(...)

References:

• https://github.com/iotaledger/wiki/blob/master/multisigs.md

10.1.2 Asynchronous Multisignature API Class

class iota.multisig.AsyncMultisigIota(adapter: Union[str, BaseAdapter], seed:
Union[AnyStr, bytearray, TryteString, None] =
None, devnet: bool = False, local_pow: bool =
False)

Extends the IOTA API so that it can send multi-signature transactions. Asynchronous API.

Caution: Make sure you understand how multisig works before attempting to use it. If you are not careful,
you could easily compromise the security of your private keys, send IOTAs to unspendable addresses, etc.

Example Usage:

Import API class
from iota.multisig import AsyncMultisigIota

Declare a multisig API instance
api = AsyncMultisigIota(

adapter = 'http://localhost:14265',

seed =
Seed(

b'TESTVALUE9DONTUSEINPRODUCTION99999JYFRTI'
b'WMKVVBAIEIYZDWLUVOYTZBKPKLLUMPDF9PPFLO9KT',

),
)

response = await api.get_digests(...)

References:

• https://github.com/iotaledger/wiki/blob/master/multisigs.md

104 Chapter 10. Multisignature

https://github.com/iotaledger/wiki/blob/master/multisigs.md
https://github.com/iotaledger/wiki/blob/master/multisigs.md

PyOTA Documentation

10.1.3 create_multisig_address

MultisigIota.create_multisig_address(digests: Iterable[iota.crypto.types.Digest])→ dict
Generates a multisig address from a collection of digests.

Parameters digests (Iterable[Digest]) – Digests to use to create the multisig address.

Important: In order to spend IOTAs from a multisig address, the signature must be generated
from the corresponding private keys in the exact same order.

Returns

dict with the following items:

{
'address': MultisigAddress,

The generated multisig address.
}

async AsyncMultisigIota.create_multisig_address(digests: Iter-
able[iota.crypto.types.Digest]) →
dict

Generates a multisig address from a collection of digests.

Parameters digests (Iterable[Digest]) – Digests to use to create the multisig address.

Important: In order to spend IOTAs from a multisig address, the signature must be generated
from the corresponding private keys in the exact same order.

Returns

dict with the following items:

{
'address': MultisigAddress,

The generated multisig address.
}

10.1.4 get_digests

MultisigIota.get_digests(index: int = 0, count: int = 1, security_level: int = 2)→ dict
Generates one or more key digests from the seed.

Digests are safe to share; use them to generate multisig addresses.

Parameters

• index (int) – The starting key index.

• count (int) – Number of digests to generate.

• security_level (int) – Number of iterations to use when generating new addresses.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

10.1. Multisig API 105

PyOTA Documentation

Returns

dict with the following items:

{
'digests': List[Digest],

Always contains a list, even if only one digest
was generated.

}

async AsyncMultisigIota.get_digests(index: int = 0, count: int = 1, security_level: int = 2)→
dict

Generates one or more key digests from the seed.

Digests are safe to share; use them to generate multisig addresses.

Parameters

• index (int) – The starting key index.

• count (int) – Number of digests to generate.

• security_level (int) – Number of iterations to use when generating new addresses.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

Returns

dict with the following items:

{
'digests': List[Digest],

Always contains a list, even if only one digest
was generated.

}

10.1.5 get_private_keys

MultisigIota.get_private_keys(index: int = 0, count: int = 1, security_level: int = 2)→ dict
Generates one or more private keys from the seed.

As the name implies, private keys should not be shared. However, in a few cases it may be necessary (e.g., for
M-of-N transactions).

Parameters

• index (int) – The starting key index.

• count (int) – Number of keys to generate.

• security_level (int) – Number of iterations to use when generating new keys.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

Returns

dict with the following items:

106 Chapter 10. Multisignature

PyOTA Documentation

{
'keys': List[PrivateKey],

Always contains a list, even if only one key was
generated.

}

References:

• iota.crypto.signing.KeyGenerator

• https://github.com/iotaledger/wiki/blob/master/multisigs.md#how-m-of-n-works

async AsyncMultisigIota.get_private_keys(index: int = 0, count: int = 1, security_level: int
= 2)→ dict

Generates one or more private keys from the seed.

As the name implies, private keys should not be shared. However, in a few cases it may be necessary (e.g., for
M-of-N transactions).

Parameters

• index (int) – The starting key index.

• count (int) – Number of keys to generate.

• security_level (int) – Number of iterations to use when generating new keys.

Larger values take longer, but the resulting signatures are more secure.

This value must be between 1 and 3, inclusive.

Returns

dict with the following items:

{
'keys': List[PrivateKey],

Always contains a list, even if only one key was
generated.

}

References:

• iota.crypto.signing.KeyGenerator

• https://github.com/iotaledger/wiki/blob/master/multisigs.md#how-m-of-n-works

10.1.6 prepare_multisig_transfer

MultisigIota.prepare_multisig_transfer(transfers: Iterable[iota.transaction.creation.ProposedTransaction],
multisig_input: iota.multisig.types.MultisigAddress,
change_address: Optional[iota.types.Address] =
None)→ dict

Prepares a bundle that authorizes the spending of IOTAs from a multisig address.

Note: This method is used exclusively to spend IOTAs from a multisig address.

If you want to spend IOTAs from non-multisig addresses, or if you want to create 0-value transfers (i.e., that
don’t require inputs), use prepare_transfer() instead.

10.1. Multisig API 107

https://github.com/iotaledger/wiki/blob/master/multisigs.md#how-m-of-n-works
https://github.com/iotaledger/wiki/blob/master/multisigs.md#how-m-of-n-works

PyOTA Documentation

Parameters

• transfers (terable[ProposedTransaction]) – Transaction objects to prepare.

Important: Must include at least one transaction that spends IOTAs (i.e., has a
nonzero value). If you want to prepare a bundle that does not spend any IOTAs, use
prepare_transfer() instead.

• multisig_input (MultisigAddress) – The multisig address to use as the input for
the transfers.

Note: This method only supports creating a bundle with a single multisig input.

If you would like to spend from multiple multisig addresses in the same bundle, create the
ProposedMultisigBundle object manually.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If the bundle has no unspent inputs, ``change_address` is ignored.

Important: Unlike prepare_transfer(), this method will NOT generate a change
address automatically.

If there are unspent inputs and change_address is empty, an exception will be raised.

This is because multisig transactions typically involve multiple individuals, and it would be
unfair to the participants if we generated a change address automatically using the seed of
whoever happened to run the prepare_multisig_transfer method!

Danger: Note that this protective measure is not a substitute for due diligence!

Always verify the details of every transaction in a bundle (including the change transac-
tion) before signing the input(s)!

Returns

dict containing the following values:

{
'trytes': List[TransactionTrytes],

Finalized bundle, as trytes.
The input transactions are not signed.

}

In order to authorize the spending of IOTAs from the multisig input, you must gen-
erate the correct private keys and invoke the iota.crypto.types.PrivateKey.
sign_input_at() method for each key, in the correct order.

Once the correct signatures are applied, you can then perform proof of work
(attachToTangle) and broadcast the bundle using send_trytes().

108 Chapter 10. Multisignature

PyOTA Documentation

async AsyncMultisigIota.prepare_multisig_transfer(transfers: Iter-
able[iota.transaction.creation.ProposedTransaction],
multisig_input:
iota.multisig.types.MultisigAddress,
change_address: Op-
tional[iota.types.Address] = None)
→ dict

Prepares a bundle that authorizes the spending of IOTAs from a multisig address.

Note: This method is used exclusively to spend IOTAs from a multisig address.

If you want to spend IOTAs from non-multisig addresses, or if you want to create 0-value transfers (i.e., that
don’t require inputs), use prepare_transfer() instead.

Parameters

• transfers (terable[ProposedTransaction]) – Transaction objects to prepare.

Important: Must include at least one transaction that spends IOTAs (i.e., has a
nonzero value). If you want to prepare a bundle that does not spend any IOTAs, use
prepare_transfer() instead.

• multisig_input (MultisigAddress) – The multisig address to use as the input for
the transfers.

Note: This method only supports creating a bundle with a single multisig input.

If you would like to spend from multiple multisig addresses in the same bundle, create the
ProposedMultisigBundle object manually.

• change_address (Optional[Address]) – If inputs are provided, any unspent
amount will be sent to this address.

If the bundle has no unspent inputs, ``change_address` is ignored.

Important: Unlike prepare_transfer(), this method will NOT generate a change
address automatically.

If there are unspent inputs and change_address is empty, an exception will be raised.

This is because multisig transactions typically involve multiple individuals, and it would be
unfair to the participants if we generated a change address automatically using the seed of
whoever happened to run the prepare_multisig_transfer method!

Danger: Note that this protective measure is not a substitute for due diligence!

Always verify the details of every transaction in a bundle (including the change transac-
tion) before signing the input(s)!

Returns

dict wontaining the following values:

10.1. Multisig API 109

PyOTA Documentation

{
'trytes': List[TransactionTrytes],

Finalized bundle, as trytes.
The input transactions are not signed.

}

In order to authorize the spending of IOTAs from the multisig input, you must gen-
erate the correct private keys and invoke the iota.crypto.types.PrivateKey.
sign_input_at() method for each key, in the correct order.

Once the correct signatures are applied, you can then perform proof of work
(attachToTangle) and broadcast the bundle using send_trytes().

10.2 PyOTA Multisignature Types

There are some specific types defined in PyOTA to help you work with creating multisignature addresses and bundles.

10.2.1 Multisignature Address

class iota.multisig.types.MultisigAddress(trytes: Union[AnyStr, bytearray, TryteString],
digests: Iterable[iota.crypto.types.Digest], bal-
ance: Optional[int] = None)

An address that was generated using digests from multiple private keys.

In order to spend inputs from a multisig address, the same private keys must be used, in the same order that the
corresponding digests were used to generate the address.

Note: Usually, you don’t have to create a MultisigAddress manually. Use create_multisig_address()
to derive an address from a list of digests.

MultisigAddress is a subclass of iota.Address, so you can use all the regular iota.Address meth-
ods on a MultisigAddress object.

Parameters

• trytes (TrytesCompatible) – Address trytes (81 trytes long).

• digests (Iterable[Digest]) – List of digests that were used to create the address.
Order is important!

• balance (Optional[int]) – Available balance of the address.

Returns MultisigAddress object.

as_json_compatible()→ dict
Get a JSON represenation of the MultisigAddress object.

Returns

dict with the following structure:

{
'trytes': str,

String representation of the address trytes.
'balance': int,

(continues on next page)

110 Chapter 10. Multisignature

PyOTA Documentation

(continued from previous page)

Balance of the address.
'digests': Iterable[Digest]

Digests that were used to create the address.
}

10.2.2 Multisignature ProposedBundle

class iota.multisig.transaction.ProposedMultisigBundle(transactions: Op-
tional[Iterable[iota.transaction.creation.ProposedTransaction]]
= None, inputs: Op-
tional[Iterable[iota.types.Address]]
= None,
change_address: Op-
tional[iota.types.Address] =
None)

A collection of proposed transactions, with multisig inputs.

Note: at this time, only a single multisig input is supported per bundle.

Note: Usually you don’t have to construct ProposedMultisigBundle bundle manually,
prepare_multisig_transfer() does it for you.

Parameters

• transactions (Optional[Iterable[ProposedTransaction]]) – Proposed
transactions that should be put into the proposed bundle.

• inputs (Optional[Iterable[Address]]) – Addresses that hold iotas to fund out-
going transactions in the bundle. Currently PyOTA supports only one mutlisig input address
per bundle.

• change_address (Optional[Address]) – Due to the signatures scheme of IOTA,
you can only spend once from an address. Therefore the library will always deduct
the full available amount from an input address. The unused tokens will be sent to
change_address if provided.

Returns ProposedMultisigBundle object.

add_inputs(inputs: Iterable[iota.multisig.types.MultisigAddress])→ None
Adds inputs to spend in the bundle.

Note that each input may require multiple transactions, in order to hold the entire signature.

Parameters inputs (Iterable[MultisigAddress]) – MultisigAddresses to use as the
inputs for this bundle.

Note: at this time, only a single multisig input is supported.

10.2. PyOTA Multisignature Types 111

PyOTA Documentation

10.3 Generating multisignature address

In order to use multisignature functionality, a special multisignature address must be created. It is done by adding each
key digest in agreed order into digests list. At the end, last participant is converting digests list (Kerl state trits) into
multisignature address.

Note: Each multisignature addresses participant has to create its own digest locally. Then, when it is created it can be
safely shared with other participants, in order to build list of digests which then will be converted into multisignature
address.

Created digests should be shared with each multisignature participant, so each one of them could regenerate address
and ensure it is OK.

Here is the example where digest is created:

Create digest 3 of 3.
api_3 =\

MultisigIota(
adapter = 'http://localhost:14265',

seed =
Seed(

b'TESTVALUE9DONTUSEINPRODUCTION99999JYFRTI'
b'WMKVVBAIEIYZDWLUVOYTZBKPKLLUMPDF9PPFLO9KT',

),
)

gd_result = api_3.get_digests(index=8, count=1, security_level=2)

digest_3 = gd_result['digests'][0] # type: Digest

And here is example where digests are converted into multisignature address:

cma_result =\
api_1.create_multisig_address(digests=[digest_1,

digest_2,
digest_3])

For consistency, every API command returns a dict, even if it only
has a single value.
multisig_address = cma_result['address'] # type: MultisigAddress

Note: As you can see in above example, multisignature addresses is created from list of digests, and in this case
order is important. The same order need to be used in signing transfer.

112 Chapter 10. Multisignature

PyOTA Documentation

10.4 Prepare transfer

Note: Since spending tokens from the same address more than once is insecure, remainder should be transferred to
other address. So, this address should be created before as next to be used multisignature address.

First signer for multisignature wallet is defining address where tokens should be transferred and next wallet address
for reminder:

pmt_result =\
api_1.prepare_multisig_transfer(
These are the transactions that will spend the IOTAs.
You can divide up the IOTAs to send to multiple addresses if you
want, but to keep this example focused, we will only include a
single spend transaction.
transfers = [

ProposedTransaction(
address =
Address(

b'TESTVALUE9DONTUSEINPRODUCTION99999NDGYBC'
b'QZJFGGWZ9GBQFKDOLWMVILARZRHJMSYFZETZTHTZR',

),

value = 42,

If you'd like, you may include an optional tag and/or
message.
tag = Tag(b'KITTEHS'),
message = TryteString.from_unicode('thanx fur cheezburgers'),

),
],

Specify our multisig address as the input for the spend
transaction(s).
Note that PyOTA currently only allows one multisig input per
bundle (although the protocol does not impose a limit).
multisig_input = multisig_address,

If there will be change from this transaction, you MUST specify
the change address! Unlike regular transfers, multisig transfers
will NOT automatically generate a change address; that wouldn't
be fair to the other participants!
change_address = None,

)

prepared_trytes = pmt_result['trytes'] # type: List[TransactionTrytes]

10.4. Prepare transfer 113

PyOTA Documentation

10.5 Sign the inputs

When trytes are prepared, round of signing must be performed. Order of signing must be the same as in generate
multisignature addresses procedure (as described above).

Note: In example below, all signing is done on one local machine. In real case, each participant sign bundle locally
and then passes it to next participant in previously defined order

index, count and security_lavel parameters for each private key should be the same as used in get_digests function
in previous steps.

bundle = Bundle.from_tryte_strings(prepared_trytes)

gpk_result = api_1.get_private_keys(index=0, count=1, security_level=3)
private_key_1 = gpk_result['keys'][0] # type: PrivateKey
private_key_1.sign_input_transactions(bundle, 1)

gpk_result = api_2.get_private_keys(index=42, count=1, security_level=3)
private_key_2 = gpk_result['keys'][0] # type: PrivateKey
private_key_2.sign_input_transactions(bundle, 4)

gpk_result = api_3.get_private_keys(index=8, count=1, security_level=2)
private_key_3 = gpk_result['keys'][0] # type: PrivateKey
private_key_3.sign_input_transactions(bundle, 7)

signed_trytes = bundle.as_tryte_strings()

Note: After creation, bundle can be optionally validated:

validator = BundleValidator(bundle)
if not validator.is_valid():
raise ValueError(
'Bundle failed validation:\n{errors}'.format(

errors = '\n'.join((' - ' + e) for e in validator.errors),
),

)

114 Chapter 10. Multisignature

PyOTA Documentation

10.6 Broadcast the bundle

When bundle is created it can be broadcasted in standard way:

api_1.send_trytes(trytes=signed_trytes, depth=3)

10.7 Remarks

Full code example.

Note: How M-of-N works

One of the key differences between IOTA multi-signatures is that M-of-N (e.g. 3 of 5) works differently. What this
means is that in order to successfully spend inputs, all of the co-signers have to sign the transaction. As such, in order
to enable M-of-N we have to make use of a simple trick: sharing of private keys.

This concept is best explained with a concrete example:

Lets say that we have a multi-signature between 3 parties: Alice, Bob and Carol. Each has their own
private key, and they generated a new multi-signature address in the aforementioned order. Currently, this
is a 3 of 3 multisig. This means that all 3 participants (Alice, Bob and Carol) need to sign the inputs with
their private keys in order to successfully spend them.

In order to enable a 2 of 3 multisig, the cosigners need to share their private keys with the other parties
in such a way that no single party can sign inputs alone, but that still enables an M-of-N multsig. In our
example, the sharing of the private keys would look as follows:

Alice -> Bob

Bob -> Carol

Carol -> Alice

Now, each participant holds two private keys that he/she can use to collude with another party to success-
fully sign the inputs and make a transaction. But no single party holds enough keys (3 of 3) to be able to
independently make the transaction.

10.8 Important

There are some general rules (repeated once again for convenience) which should be followed while working with
multisignature addresses (and in general with IOTA):

10.6. Broadcast the bundle 115

https://github.com/iotaledger/iota.py/blob/develop/examples/multisig.py

PyOTA Documentation

10.8.1 Signing order is important

When creating a multi-signature address and when signing a transaction for that address, it is important to follow
the exact order that was used during the initial creation. If we have a multi-signature address that was signed in the
following order: Alice -> Bob -> Carol. You will not be able to spend these inputs if you provide the signatures in a
different order (e.g. Bob -> Alice -> Carol). As such, keep the signing order in mind.

10.8.2 Never re-use keys

Probably the most important rule to keep in mind: absolutely never re-use private keys. IOTA uses one-time Winternitz
signatures, which means that if you re-use private keys you significantly decrease the security of your private keys, up
to the point where signing of another transaction can be done on a conventional computer within few days. Therefore,
when generating a new multi-signature with your co-signers, always increase the private key index counter and only
use a single private key once. Don’t use it for any other multi-signatures and don’t use it for any personal transactions.

10.8.3 Never share your private keys

Under no circumstances - other than wanting to reduce the requirements for a multi-signature (see section How M-of-
N works) - should you share your private keys. Sharing your private keys with others means that they can sign your
part of the multi-signature successfully.

116 Chapter 10. Multisignature

CHAPTER

ELEVEN

ADVANCED: PYOTA COMMANDS

Note: This page contains information about how PyOTA works under the hood.

It is absolutely not necessary to be familiar with the content described below if you just want to use the library.

However, if you are a curious mind or happen to do development on the library, the following information might be
useful.

PyOTA provides the API interface (Core API Methods and Extended API Methods) for users of the library. These han-
dle constructing and sending HTTP requests to the specified node through adapters, furthermore creating, transforming
and translating between PyOTA-specific types and (JSON-encoded) raw data. They also filter outgoing requests and
incoming responses to ensure that only appropriate data is communicated with the node.

PyOTA implements the Command Design Pattern. High level API interface methods (Core API Methods and Extended
API Methods) internally call PyOTA commands to get the job done.

Most PyOTA commands are sub-classed from FilterCommand class, which is in turn sub-classed from
BaseCommand class. The reason for the 2-level inheritance is simple: separating functionality. As the name im-
plies, FilterCommand adds filtering capabilities to BaseCommand, that contains the logic of constructing the
request and using its adapter to send it and receive a response.

11.1 Command Flow

As mentioned earlier, API methods rely on PyOTA commands to carry out specific operations. It is important to
understand what happens during command execution so you are able to implement new methods that extend the
current capabilities of PyOTA.

Let’s investigate the process through an example of a core API method, for instance find_transactions(), that
calls FindTransactionCommand PyOTA command internally.

Note: FindTransactionCommand is sub-classed from FilterCommand.

To illustrate what the happens inside the API method, take a look at the following figure

Fig. 1: Inner workings of a PyOTA Command.

• When you call find_transactions() core API method, it initializes a FindTransactionCommand
object with the adapter of the API instance it belongs to.

• Then calls this command with the keyword arguments it was provided with.

117

https://en.wikipedia.org/wiki/Command_pattern

PyOTA Documentation

• The command prepares the request by applying a RequestFilter on the payload. The command specific
RequestFilter validates that the payload has correct types, in some cases it is even able to convert the
payload to the required type and format.

• Command execution injects the name of the API command (see IRI API Reference for command names) in the
request and sends it to the adapter.

• The adapter communicates with the node and returns its response.

• The response is prepared by going through a command-specific ResponseFilter.

• The response is returned to the high level API method as a dict, ready to be returned to the main application.

Note: A command object can only be called once without resetting it. When you use the high level API methods, you
don’t need to worry about resetting commands as each call to an API method will initialize a new command object.

11.2 Filters

If you take a look at the actual implementation of FindTransactionsCommand, you notice that you have to
define your own request and response filter classes.

Filters in PyOTA are based on the Filters library. Read more about how they work at the filters documentation site.

In short, you can create filter chains through which the filtered value passes, and generates errors if something failed
validation. Filter chains are specified in the custom filter class’s __init__() function. If you also want to modify
the filtered value before returning it, override the _apply() method of its base class. Read more about how to create
custom filters.

PyOTA offers you some custom filters for PyOTA-specific types:

11.2.1 Trytes

class iota.filters.Trytes(result_type: type = <class 'iota.types.TryteString'>)
Validates a sequence as a sequence of trytes.

When a value doesn’t pass the filter, a ValueError is raised with lots of contextual info attached to it.

Parameters result_type (TryteString) – Any subclass of TryteString that you want
the filter to validate.

Raises

• TypeError – if value is not of result_type.

• ValueError – if result_type is not of TryteString type.

Returns Trytes object.

118 Chapter 11. Advanced: PyOTA Commands

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://pypi.org/project/phx-filters/
https://filters.readthedocs.io/en/latest/
https://filters.readthedocs.io/en/latest/writing_filters.html
https://filters.readthedocs.io/en/latest/writing_filters.html

PyOTA Documentation

11.2.2 StringifiedTrytesArray

filters.StringifiedTrytesArray(**runtime_kwargs)→ filters.base.FilterChain
Validates that the incoming value is an array containing tryte strings corresponding to the specified type (e.g.,
TransactionHash).

When a value doesn’t pass the filter, a ValueError is raised with lots of contextual info attached to it.

Parameters trytes_type (TryteString) – Any subclass of TryteString that you want
the filter to validate.

Returns filters.FilterChain object.

Important: This filter will return string values, suitable for inclusion in an API request. If you are expecting
objects (e.g., Address), then this is not the filter to use!

Note: This filter will allow empty arrays and None. If this is not desirable, chain this filter with f.NotEmpty
or f.Required, respectively.

11.2.3 AddressNoChecksum

class iota.filters.AddressNoChecksum
Validates a sequence as an Address, then chops off the checksum if present.

When a value doesn’t pass the filter, a ValueError is raised with lots of contextual info attached to it.

Returns AddressNoChecksum object.

11.2.4 GeneratedAddress

class iota.filters.GeneratedAddress
Validates an incoming value as a generated Address (must have key_index and security_level set).

When a value doesn’t pass the filter, a ValueError is raised with lots of contextual info attached to it.

Returns GeneratedAddress object.

11.2.5 NodeUri

class iota.filters.NodeUri
Validates a string as a node URI.

When a value doesn’t pass the filter, a ValueError is raised with lots of contextual info attached to it.

Returns NodeUri object.

SCHEMES = {'tcp', 'udp'}
Allowed schemes for node URIs.

11.2. Filters 119

PyOTA Documentation

11.2.6 SecurityLevel

filters.SecurityLevel(**runtime_kwargs)→ filters.base.FilterChain
Generates a filter chain for validating a security level.

Returns filters.FilterChain object.

Important: The general rule in PyOTA is that all requests going to a node are validated, but only responses that
contain transaction/bundle trytes or hashes are checked.

Also note, that for extended commands, ResponseFilter is usually implemented with just a “pass” statement.
The reason being that these commands do not directly receive their result a node, but rather from core commands that
do have their ResponseFilter implemented. More about this topic in the next section.

11.3 Extended Commands

Core commands, like find_transactions() in the example above, are for direct communication with the node
for simple tasks such as finding a transaction on the Tangle or getting info about the node. Extended commands (that
serve Extended API Methods) on the other hand carry out more complex operations such as combining core commands,
building objects, etc. . .

As a consequence, extended commands override the default execution phase of their base class.

Observe for example FindTransactionObjectsCommand extended command that is called in
find_transaction_objects() extended API method. It overrides the _execute() method of its
base class.

Let’s take a closer look at the implementation:

...
def _execute(self, request):

bundles = request\
.get('bundles') # type: Optional[Iterable[BundleHash]]

addresses = request\
.get('addresses') # type: Optional[Iterable[Address]]

tags = request\
.get('tags') # type: Optional[Iterable[Tag]]

approvees = request\
.get('approvees') # type: Optional[Iterable[TransactionHash]]

ft_response = FindTransactionsCommand(adapter=self.adapter)(
bundles=bundles,
addresses=addresses,
tags=tags,
approvees=approvees,

)

hashes = ft_response['hashes']
transactions = []
if hashes:

gt_response = GetTrytesCommand(adapter=self.adapter)(hashes=hashes)

transactions = list(map(
Transaction.from_tryte_string,
gt_response.get('trytes') or [],

(continues on next page)

120 Chapter 11. Advanced: PyOTA Commands

PyOTA Documentation

(continued from previous page)

)) # type: List[Transaction]

return {
'transactions': transactions,

}
...

Instead of sending the request to the adapter, FindTransactionObjectsCommand._execute() calls
FindTransactionsCommand core command, gathers the transaction hashes that it found, and collects the trytes
of those transactions by calling GetTrytesCommand core command. Finally, using the obtained trytes, it constructs
a list of transaction objects that are returned to find_transaction_objects().

Important: If you come up with a new functionality for the PyOTA API, please raise an issue in the PyOTA Bug
Tracker to facilitate discussion.

Once the community agrees on your proposal, you may start implementing a new extended API method and the
corresponding extended PyOTA command.

Contributions are always welcome! :)

Visit the Contributing to PyOTA page to find out how you can make a difference!

11.3. Extended Commands 121

https://github.com/iotaledger/iota.py/issues
https://github.com/iotaledger/iota.py/issues
https://github.com/iotaledger/iota.py/blob/master/.github/CONTRIBUTING.md

PyOTA Documentation

122 Chapter 11. Advanced: PyOTA Commands

CHAPTER

TWELVE

TUTORIALS

Are you new to IOTA in Python? Don’t worry, we got you covered! With the walkthrough examples of this section,
you will be a master of PyOTA.

In each section below, a code snippet will be shown and discussed in detail to help you understand how to carry out
specific tasks with PyOTA.

The example scripts displayed here can also be found under examples/tutorials/ directory in the repository.
Run them in a Python environment that has PyOTA installed. See README:Install PyOTA for more info.

If you feel that something is missing or not clear, please post your questions and suggestions in the PyOTA Bug
Tracker.

Let’s get to it then!

12.1 1. Hello Node

In this example, you will learn how to:

• Import the iota package into your application.

• Instantiate an API object for communication with the IOTA network.

• Request information about the IOTA node you are connected to.

12.1.1 Code

1 # Import neccessary modules
2 from iota import Iota
3 from pprint import pprint
4

5 # Declare an API object
6 api = Iota('https://nodes.devnet.iota.org:443')
7

8 # Request information about the node
9 response = api.get_node_info()

10

11 # Using pprint instead of print for a nicer looking result in the console
12 pprint(response)

123

https://github.com/iotaledger/iota.py/issues
https://github.com/iotaledger/iota.py/issues

PyOTA Documentation

12.1.2 Discussion

1 # Import neccessary modules
2 from iota import Iota
3 from pprint import pprint

First things first, we need to import in our application the modules we intend to use. PyOTA provide the iota
package, therefore, whenever you need something from the library, you need to import it from there.

Notice, how we import the Iota object, that defines a so-called extended API object. We will use this to send and
receive data from the network. Read more about API objects at PyOTA API Classes.

We also import the pprint method that prettifies the output before printing it to the console.

5 # Declare an API object
6 api = Iota('https://nodes.devnet.iota.org:443')

Next, we declare an API object. Since this object handles the communication, we need to specify an IOTA node to
connect to in the form of an URI. Note, that the library will parse this string and will throw an exception if it is not a
valid one.

8 # Request information about the node
9 response = api.get_node_info()

Then we can call the Iota.get_node_info() method of the API object to get some basic info about the node.

11 # Using pprint instead of print for a nicer looking result in the console
12 pprint(response)

Finally, we print out the response. It is important to note, that all API methods return a python dictionary. Refer to
the method’s documentation to determine what exactly is in the response dict. Here for example, we could list the
features of the node:

pprint(response['features'])

12.2 2. Send Data

In this example, you will learn how to:

• Encode data to be stored on the Tangle.

• Generate a random IOTA address that doesn’t belong to anyone.

• Create a zero-value transaction with custom payload.

• Send a transaction to the network.

124 Chapter 12. Tutorials

PyOTA Documentation

12.2.1 Code

1 from iota import Iota, TryteString, Address, Tag, ProposedTransaction
2 from pprint import pprint
3

4 # Declare an API object
5 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)
6

7 # Prepare custom data
8 my_data = TryteString.from_unicode('Hello from the Tangle!')
9

10 # Generate a random address that doesn't have to belong to anyone
11 my_address = Address.random()
12

13 # Tag is optional here
14 my_tag = Tag(b'MY9FIRST9TAG')
15

16 # Prepare a transaction object
17 tx = ProposedTransaction(
18 address=my_address,
19 value=0,
20 tag=my_tag,
21 message=my_data
22)
23

24 # Send the transaction to the network
25 response = api.send_transfer([tx])
26

27 pprint('Check your transaction on the Tangle!')
28 pprint('https://utils.iota.org/transaction/%s/devnet' % response['bundle'][0].hash)

12.2.2 Discussion

1 from iota import Iota, TryteString, Address, Tag, ProposedTransaction
2 from pprint import pprint
3

4 # Declare an API object
5 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)

We have seen this part before. Note, that now we import more objects which we will use to construct our transaction.

Notice devnet=True in the argument list of the API instantiation. We tell the API directly that we will use IOTA’s
testnet, known as the devnet. By default, the API is configured for the mainnet.

7 # Prepare custom data
8 my_data = TryteString.from_unicode('Hello from the Tangle!')

If you read Basic Concepts and PyOTA Types, it shouldn’t be a surprise to you that most things in IOTA are represented
as trytes, that are TryteString in PyOTA.

Here, we encode our message with TryteString.from_unicode() into trytes.

10 # Generate a random address that doesn't have to belong to anyone
11 my_address = Address.random()

To put anything (transactions) on the Tangle, it needs to be associated with an address. Since we will be posting a

12.2. 2. Send Data 125

PyOTA Documentation

zero-value transaction, nobody has to own this address; therefore we can use the TryteString.random() (an
Address is just a TryteString with some additional attributes and fixed length) method to generate one.

13 # Tag is optional here
14 my_tag = Tag(b'MY9FIRST9TAG')

To tag our transaction, we might define a custom Tag object. Notice, that the b means we are passing a bytestring
value instead of a unicode string. This is so that PyOTA interprets our input as literal trytes, rather than a unicode
string that needs to be encoded into trytes.

When passing a bytestring to a PyOTA class, each byte is interpreted as a tryte; therefore we are restricted to the tryte
alphabet.

16 # Prepare a transaction object
17 tx = ProposedTransaction(
18 address=my_address,
19 value=0,
20 tag=my_tag,
21 message=my_data
22)

It’s time to construct the transaction. According to Transaction Types, PyOTA uses ProposedTransaction to
build transactions that are not yet broadcast to the network. Oberve, that the value=0 means this is a zero-value
transaction.

24 # Send the transaction to the network
25 response = api.send_transfer([tx])

Next, we send the transfer to the node for tip selection, proof-of-work calculation, broadcasting and storing. The API
takes care of all these tasks, and returns the resulting Bundle object.

Note: send_transfer() takes a list of ProposedTransaction objects as its transfers argument. An
IOTA transfer (bundle) usually consists of multiple transactions linked together, however, in this simple example, there
is only one transaction in the bundle. Regardless, you need to pass this sole transaction as a list of one transaction.

27 pprint('Check your transaction on the Tangle!')
28 pprint('https://utils.iota.org/transaction/%s/devnet' % response['bundle'][0].hash)

Finally, we print out the transaction’s link on the Tangle Explorer. Observe how we extract the transaction hash from
the response dict. We take the first element of the bundle, as it is just a sequence of transactions, and access its hash
attribute.

12.3 3. Fetch Data

In this example, you will learn how to:

• Fetch transaction objects from the Tangle based on a criteria.

• Decode messages from transactions.

126 Chapter 12. Tutorials

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.iota.org/docs/getting-started/0.1/introduction/ternary#tryte-encoding
https://docs.iota.org/docs/getting-started/0.1/introduction/ternary#tryte-encoding

PyOTA Documentation

12.3.1 Code

1 from iota import Iota, Address
2 from iota.codecs import TrytesDecodeError
3

4 # Declare an API object
5 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)
6

7 # Address to fetch data from
8 # Replace with your random generated address from Tutorial 2. to fetch the data
9 # that you uploaded.

10 addy = Address(b
→˓'WWO9DRAUDDSDSTTUPKJRNPSYLWAVQBBXISLKLTNDPVKOPMUERDUELLUPHNT9L9YWBDKOLYVWRAFRKIBLP')

11

12 print('Fetching data from the Tangle...')
13 # Fetch the transaction objects of the address from the Tangle
14 response = api.find_transaction_objects(addresses=[addy])
15

16 if not response['transactions']:
17 print('Couldn\'t find data for the given address.')
18 else:
19 print('Found:')
20 # Iterate over the fetched transaction objects
21 for tx in response['transactions']:
22 # data is in the signature_message_fragment attribute as trytes, we need
23 # to decode it into a unicode string
24 data = tx.signature_message_fragment.decode(errors='ignore')
25 print(data)

12.3.2 Discussion

1 from iota import Iota, Address
2 from iota.codecs import TrytesDecodeError
3

4 # Declare an API object
5 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)

The usual part again, but we also import TrytesDecodeError from iota.codec. We will use this to detect if
the fetched trytes contain encoded text.

7 # Address to fetch data from
8 # Replace with your random generated address from Tutorial 2. to fetch the data
9 # that you uploaded.

10 addy = Address(b
→˓'WWO9DRAUDDSDSTTUPKJRNPSYLWAVQBBXISLKLTNDPVKOPMUERDUELLUPHNT9L9YWBDKOLYVWRAFRKIBLP')

We declare an IOTA address on the Tangle to fetch data from. You can replace this address with your own from the
previous example 2. Send Data, or just run it as it is.

12 print('Fetching data from the Tangle...')
13 # Fetch the transaction objects of the address from the Tangle
14 response = api.find_transaction_objects(addresses=[addy])

We use find_transaction_objects() extended API method to gather the transactions that belong to our
address. This method is also capable of returning Transaction objects for bundle hashes, tags or approving trans-
actions. Note that you can supply multiple of these, the method always returns a dict with a list of transactions.

12.3. 3. Fetch Data 127

PyOTA Documentation

Note: Remember, that the parameters need to be supplied as lists, even if there is only one value.

16 if not response['transactions']:
17 print('Couldn\'t find data for the given address.')
18 else:
19 print('Found:')
20 # Iterate over the fetched transaction objects
21 for tx in response['transactions']:
22 # data is in the signature_message_fragment attribute as trytes, we need
23 # to decode it into a unicode string
24 data = tx.signature_message_fragment.decode(errors='ignore')
25 print(data)

Finally, we extract the data we are looking for from the transaction objects. A Transaction has several attributes,
one of which is the signature_message_fragment. This contains the payload message for zero-value transac-
tions, and the digital signature that authorizes spending for value transactions.

Since we are interested in data now, we decode its content (raw trytes) into text. Notice, that we pass the
errors='ignore' argument to the decode() method to drop values we can’t decode using utf-8, or if the
raw trytes can’t be decoded into legit bytes. A possible reason for the latter can be if the attribute contains a signature
rather than a message.

12.4 4.a Generate Address

In this example, you will learn how to:

• Generate a random seed.

• Generate an IOTA address that belongs to your seed.

• Acquire free devnet IOTA tokens that you can use to play around with.

12.4.1 Code

1 from iota import Iota, Seed
2

3 # Generate a random seed, or use one you already have (for the devnet)
4 print('Generating a random seed...')
5 my_seed = Seed.random()
6 # my_seed = Seed(b'MYCUSTOMSEED')
7 print('Your seed is: ' + str(my_seed))
8

9 # Declare an API object
10 api = Iota(
11 adapter='https://nodes.devnet.iota.org:443',
12 seed=my_seed,
13 devnet=True,
14)
15

16 print('Generating the first unused address...')
17 # Generate the first unused address from the seed
18 response = api.get_new_addresses()
19

(continues on next page)

128 Chapter 12. Tutorials

PyOTA Documentation

(continued from previous page)

20 addy = response['addresses'][0]
21

22 print('Your new address is: ' + str(addy))
23 print('Go to https://faucet.devnet.iota.org/ and enter you address to receive free

→˓devnet tokens.')

12.4.2 Discussion

1 from iota import Iota, Seed
2

3 # Generate a random seed, or use one you already have (for the devnet)
4 print('Generating a random seed...')
5 my_seed = Seed.random()
6 # my_seed = Seed(b'MYCUSTOMSEED')
7 print('Your seed is: ' + str(my_seed))

We start off by generating a random seed with the help of the library. You are also free to use your own seed, just
uncomment line 6 and put it there.

If you choose to generate one, your seed is written to the console so that you can save it for later. Be prepared to do
so, because you will have to use it in the following tutorials.

9 # Declare an API object
10 api = Iota(
11 adapter='https://nodes.devnet.iota.org:443',
12 seed=my_seed,
13 devnet=True,
14)

Notice, how we pass the seed argument to the API class’s init method. Whenever the API needs to work with
addresses or private keys, it will derive them from this seed.

Important: Your seed never leaves the library and your computer. Treat your (mainnet) seed like any other password
for a financial service: safe. If your seed is compromised, attackers can steal your funds.

16 print('Generating the first unused address...')
17 # Generate the first unused address from the seed
18 response = api.get_new_addresses()
19

20 addy = response['addresses'][0]

To generate a new address, we call get_new_addresses() extended API method. Without arguments, this will
return a dict with the first unused address starting from index 0. An unused address is address that has no transac-
tions referencing it on the Tangle and was never spent from.

If we were to generate more addresses starting from a desired index, we could specify the start and count param-
eters. Read more about how to generate addresses in PyOTA at Generating Addresses.

On line 20 we access the first element of the list of addresses in the response dictionary.

22 print('Your new address is: ' + str(addy))
23 print('Go to https://faucet.devnet.iota.org/ and enter you address to receive free

→˓devnet tokens.')

12.4. 4.a Generate Address 129

PyOTA Documentation

Lastly, the address is printed to the console, so that you can copy it. Visit https://faucet.devnet.iota.org/ and enter the
address to receive free devnet tokens of 1000i.

You might need to wait 1-2 minutes until the sum arrives to you address. To check your balance, go to 4.b Check
Balance or 4.c Get Account Data.

12.5 4.b Check Balance

In this example, you will learn how to:

• Check the balance of a specific IOTA address.

12.5.1 Code

1 from iota import Iota, Address
2 import time
3

4 # Put your address from Tutorial 4.a here
5 my_address = Address(b'YOURADDRESSFROMTHEPREVIOUSTUTORIAL')
6

7 # Declare an API object
8 api = Iota(adapter='https://nodes.devnet.iota.org:443', devnet=True)
9

10 # Script actually runs until you load up your address
11 success = False
12

13 while not success:
14 print('Checking balance on the Tangle for a specific address...')
15 # API method to check balance
16 response = api.get_balances(addresses=[my_address])
17

18 # response['balances'] is a list!
19 if response['balances'][0]:
20 print('Found the following information for address ' + str(my_address) + ':')
21 print('Balance: ' + str(response['balances'][0]) + 'i')
22 success = True
23 else:
24 print('Zero balance found, retrying in 30 seconds...')
25 time.sleep(30)

12.5.2 Discussion

1 from iota import Iota, Address
2 import time
3

4 # Put your address from Tutorial 4.a here
5 my_address = Address(b'YOURADDRESSFROMTHEPREVIOUSTUTORIAL')
6

7 # Declare an API object
8 api = Iota(adapter='https://nodes.devnet.iota.org:443', devnet=True)

The first step to check the balance of an address is to actually have an address. Exchange the sample address on line 5
with your generated address from 4.a Generate Address.

130 Chapter 12. Tutorials

https://faucet.devnet.iota.org/

PyOTA Documentation

Since we don’t need to generate an address, there is no need for a seed to be employed in the API object. Note the
time import, we need it for later.

10 # Script actually runs until you load up your address
11 success = False
12

13 while not success:
14 print('Checking balance on the Tangle for a specific address...')
15 # API method to check balance
16 response = api.get_balances(addresses=[my_address])
17

18 # response['balances'] is a list!
19 if response['balances'][0]:
20 print('Found the following information for address ' + str(my_address) + ':')
21 print('Balance: ' + str(response['balances'][0]) + 'i')
22 success = True
23 else:
24 print('Zero balance found, retrying in 30 seconds...')
25 time.sleep(30)

Our script will poll the network for the address balance as long as the returned balance is zero. Therefore, the address
you declared as my_address should have some balance. If you see the Zero balance found... message a
couple of times, head over to https://faucet.devnet.iota.org/ and load up your address.

get_balances() returns the confirmed balance of the address. You could supply multiple addresses at the same
time and get their respective balances in a single call. Don’t forget, that the method returns a dict. More details
about it can be found at get_balances().

12.6 4.c Get Account Data

In this example, you will learn how to:

• Gather addresses, balance and bundles associated with your seed on the Tangle.

Warning: Account in the context of this example is not to be confused with the Account Module, that is a feature
yet to be implemented in PyOTA.

Account here simply means the addresses and funds that belong to your seed.

12.6.1 Code

1 from iota import Iota, Seed
2 from pprint import pprint
3 import time
4

5 # Put your seed from Tutorial 4.a here
6 my_seed = Seed(b

→˓'YOURSEEDFROMTHEPREVIOUSTUTORIAL99')
7

8 # Declare an API object
9 api = Iota(

10 adapter='https://nodes.devnet.iota.org:443',
11 seed=my_seed,

(continues on next page)

12.6. 4.c Get Account Data 131

https://faucet.devnet.iota.org/
https://docs.iota.org/docs/client-libraries/0.1/account-module/introduction/overview

PyOTA Documentation

(continued from previous page)

12 devnet=True
13)
14

15 # Script actually runs until it finds balance
16 success = False
17

18 while not success:
19 print('Checking account information on the Tangle...')
20 # Gather addresses, balance and bundles
21 response = api.get_account_data()
22

23 # response['balance'] is an integer!
24 if response['balance']:
25 print('Found the following information based on your seed:')
26 pprint(response)
27 success = True
28 else:
29 print('Zero balance found, retrying in 30 seconds...')
30 time.sleep(30)

12.6.2 Discussion

1 from iota import Iota, Seed
2 from pprint import pprint
3 import time

We will need pprint for a prettified output of the response dict and time for polling until we find non-zero
balance.

5 # Put your seed from Tutorial 4.a here
6 my_seed = Seed(b

→˓'YOURSEEDFROMTHEPREVIOUSTUTORIAL99')
7

8 # Declare an API object
9 api = Iota(

10 adapter='https://nodes.devnet.iota.org:443',
11 seed=my_seed,
12 devnet=True
13)

Copy your seed from 4.a Generate Address onto line 6. The API will use your seed to generate addresses and look for
corresponding transactions on the Tangle.

15 # Script actually runs until it finds balance
16 success = False
17

18 while not success:
19 print('Checking account information on the Tangle...')
20 # Gather addresses, balance and bundles
21 response = api.get_account_data()
22

23 # response['balance'] is an integer!
24 if response['balance']:
25 print('Found the following information based on your seed:')

(continues on next page)

132 Chapter 12. Tutorials

PyOTA Documentation

(continued from previous page)

26 pprint(response)
27 success = True
28 else:
29 print('Zero balance found, retrying in 30 seconds...')
30 time.sleep(30)

Just like in the previous example, we will poll for information until we find a non-zero balance.
get_account_data() without arguments generates addresses from index 0 until it finds the first unused. Then,
it queries the node about bundles of those addresses and sums up their balance.

Note: If you read get_account_data() documentation carefully, you notice that you can gain control over
which addresses are checked during the call by specifying the start and stop index parameters.

This can be useful when your addresses with funds do not follow each other in the address namespace, or a snapshot
removed transactions from the Tangle. It is recommended that you keep a local database of your already used address
indices.

Once implemented in PyOTA, Account Module will address the aforementioned problems.

The response dict contains the addresses, bundles and total balance of your seed.

12.7 5. Send Tokens

In this example, you will learn how to:

• Construct a value transfer with PyOTA.

• Send a value transfer to an arbitrary IOTA address.

• Analyze a bundle of transactions on the Tangle.

Note: As a prerequisite to this tutorial, you need to have completed 4.a Generate Address, and have a seed that owns
devnet tokens.

12.7.1 Code

1 from iota import Iota, Seed, Address, TryteString, ProposedTransaction, Tag
2

3 # Put your seed here from Tutorial 4.a, or a seed that owns tokens (devnet)
4 my_seed = Seed(b'YOURSEEDFROMTHEPREVIOUSTUTORIAL')
5

6 # Declare an API object
7 api = Iota(
8 adapter='https://nodes.devnet.iota.org:443',
9 seed=my_seed,

10 devnet=True,
11)
12

13 # Addres to receive 1i
14 # Feel free to replace it. For example, run the code from Tutorial 4.a
15 # and use that newly generated address with a 'fresh' seed.

(continues on next page)

12.7. 5. Send Tokens 133

https://docs.iota.org/docs/client-libraries/0.1/account-module/introduction/overview

PyOTA Documentation

(continued from previous page)

16 receiver = Address(b
→˓'WWUTQBO99YDCBVBPAPVCANW9ATSNUPPLCPGDQXGQEVLUBSFHCEWOA9DIYYOXJONDIRHYPXQXOYXDPHREZ')

17

18 print('Constructing transfer of 1i...')
19 # Create the transfer object
20 tx = ProposedTransaction(
21 address=receiver,
22 value=1,
23 message=TryteString.from_unicode('I just sent you 1i, use it wisely!'),
24 tag=Tag('VALUETX'),
25)
26

27 print('Preparing bundle and sending it to the network...')
28 # Prepare the transfer and send it to the network
29 response = api.send_transfer(transfers=[tx])
30

31 print('Check your transaction on the Tangle!')
32 print('https://utils.iota.org/bundle/%s/devnet' % response['bundle'].hash)

12.7.2 Discussion

1 from iota import Iota, Seed, Address, TryteString, ProposedTransaction, Tag
2

3 # Put your seed here from Tutorial 4.a, or a seed that owns tokens (devnet)
4 my_seed = Seed(b'YOURSEEDFROMTHEPREVIOUSTUTORIAL')
5

6 # Declare an API object
7 api = Iota(
8 adapter='https://nodes.devnet.iota.org:443',
9 seed=my_seed,

10 devnet=True,
11)

We are going to send a value transaction, that requires us to prove that we own the address containg the funds to spend.
Therefore, we need our seed from which the address was generated.

Put your seed from 4.a Generate Address onto line 4. We pass this seed to the API object, that will utilize it for signing
the transfer.

13 # Addres to receive 1i
14 # Feel free to replace it. For example, run the code from Tutorial 4.a
15 # and use that newly generated address with a 'fresh' seed.
16 receiver = Address(b

→˓'WWUTQBO99YDCBVBPAPVCANW9ATSNUPPLCPGDQXGQEVLUBSFHCEWOA9DIYYOXJONDIRHYPXQXOYXDPHREZ')

In IOTA, funds move accross addresses, therefore we need to define a receiver address. For testing value transfers,
you should send the funds only to addresses that you control; if you use a randomly-generated receiver address, you
won’t be able to recover the funds afterward! Re-run 4.a Generate Address for a new seed and a new address, or just
paste a valid IOTA address that you own onto line 16.

18 print('Constructing transfer of 1i...')
19 # Create the transfer object
20 tx = ProposedTransaction(
21 address=receiver,

(continues on next page)

134 Chapter 12. Tutorials

PyOTA Documentation

(continued from previous page)

22 value=1,
23 message=TryteString.from_unicode('I just sent you 1i, use it wisely!'),
24 tag=Tag('VALUETX'),
25)

We declare a ProposedTransaction object like we did before, but this time, with value=1 parameter. The
smallest value you can send is 1 iota (“1i”), there is no way to break it into smaller chunks. It is a really small value
anyway. You can also attach a message to the transaction, for example a little note to the beneficiary of the payment.

27 print('Preparing bundle and sending it to the network...')
28 # Prepare the transfer and send it to the network
29 response = api.send_transfer(transfers=[tx])

To actually send the transfer, all you need to do is call send_transfer() extended API method. This method will
take care of:

• Gathering inputs (addresses you own and have funds) to fund the 1i transfer.

• Generating a new change_address, and automatically sending the remaining funds (balance of
chosen inputs - 1i) from inputs to change_address.

Warning: This step is extremely important, as it prevents you from spending twice from the
same address.

When an address is used as an input, all tokens will be withdrawn. Part of the tokens will be used
to fund your transaction, the rest will be transferred to change_address.

• Constructing the transfer bundle with necessary input and output transactions.

• Finalizing the bundle and signing the spending transactions.

• Doing proof-of-work for each transaction in the bundle and sending it to the network.

31 print('Check your transaction on the Tangle!')
32 print('https://utils.iota.org/bundle/%s/devnet' % response['bundle'].hash)

Open the link and observe the bundle you have just sent to the Tangle. Probably it will take a couple of seconds for
the network to confirm it.

What you see is a bundle with 4 transactions in total, 1 input and 3 outputs. But why are there so many transactions?

• There is one transaction that withdraws iotas, this has negative value. To authorize this spending, a valid signa-
ture is included in the transaction’s signature_message_fragment field. The signature however is too
long to fit into one transaction, therefore the library appends a new, zero-value transaction to the bundle that
holds the second part of the signature. This you see on the output side of the bundle.

• A 1i transaction to the receiver address spends part of the withdrawn amount.

• The rest is transfered to change_address in a new output transaction.

Once the bundle is confirmed, try rerunning the script from 4.c Get Account Data with the same seed as in this
tutorial. Your balance should be decremented by 1i, and you should see a new address, which was actually the
change_address.

12.7. 5. Send Tokens 135

https://docs.iota.org/docs/getting-started/0.1/clients/addresses#spent-addresses
https://docs.iota.org/docs/getting-started/0.1/clients/addresses#spent-addresses

PyOTA Documentation

12.8 6. Store Encrypted Data

In this example, you will learn how to:

• Convert Python data structures to JSON format.

• Encrypt data and include it in a zero-value transaction.

• Store the zero-value transaction with encrypted data on the Tangle.

Warning: We will use the simple-crypt external library for encryption/decryption. Before proceeding to the
tutorial, make sure you install it by running:

pip install simple-crypt

12.8.1 Code

1 """
2 Encrypt data and store it on the Tangle.
3

4 simplecrypt library is needed for this example (`pip install simple-crypt`)!
5 """
6 from iota import Iota, TryteString, Tag, ProposedTransaction
7 from simplecrypt import encrypt
8 from base64 import b64encode
9 from getpass import getpass

10

11 import json
12

13 # Declare an API object
14 api = Iota(
15 adapter='https://nodes.devnet.iota.org:443',
16 seed=b'YOURSEEDFROMTHEPREVIOUSTUTORIAL',
17 devnet=True,
18)
19

20 # Some confidential information
21 data = {
22 'name' : 'James Bond',
23 'age' : '32',
24 'job' : 'agent',
25 'address' : 'London',
26 }
27

28 # Convert to JSON format
29 json_data = json.dumps(data)
30

31 # Ask user for a password to use for encryption
32 password = getpass('Please supply a password for encryption:')
33

34 print('Encrypting data...')
35 # Encrypt data
36 # Note, that in Python 3, encrypt returns 'bytes'
37 cipher = encrypt(password, json_data)
38

(continues on next page)

136 Chapter 12. Tutorials

PyOTA Documentation

(continued from previous page)

39 # Encode to base64, output contains only ASCII chars
40 b64_cipher = b64encode(cipher)
41

42 print('Constructing transaction locally...')
43 # Convert to trytes
44 trytes_encrypted_data = TryteString.from_bytes(b64_cipher)
45

46 # Generate an address from your seed to post the transfer to
47 my_address = api.get_new_addresses(index=42)['addresses'][0]
48

49 # Tag is optional here
50 my_tag = Tag(b'CONFIDENTIALINFORMATION')
51

52 # Prepare a transaction object
53 tx = ProposedTransaction(
54 address=my_address,
55 value=0,
56 tag=my_tag,
57 message=trytes_encrypted_data,
58)
59

60 print('Sending transfer...')
61 # Send the transaction to the network
62 response = api.send_transfer([tx])
63

64 print('Check your transaction on the Tangle!')
65 print('https://utils.iota.org/transaction/%s/devnet' % response['bundle'][0].hash)
66 print('Tail transaction hash of the bundle is: %s' % response['bundle'].tail_

→˓transaction.hash)

12.8.2 Discussion

1 """
2 Encrypt data and store it on the Tangle.
3

4 simplecrypt library is needed for this example (`pip install simple-crypt`)!
5 """
6 from iota import Iota, TryteString, Tag, ProposedTransaction
7 from simplecrypt import encrypt
8 from base64 import b64encode
9 from getpass import getpass

10

11 import json
12

13 # Declare an API object
14 api = Iota(
15 adapter='https://nodes.devnet.iota.org:443',
16 seed=b'YOURSEEDFROMTHEPREVIOUSTUTORIAL',
17 devnet=True,
18)

We will use the encrypt method to encipher the data, and b64encode for representing it as ASCII characters.
getpass will prompt the user for a password, and the json library is used for JSON formatting.

We will need an address to upload the data, therefore we need to supply the seed to the Iota API instance. The
address will be generated from this seed.

12.8. 6. Store Encrypted Data 137

PyOTA Documentation

20 # Some confidential information
21 data = {
22 'name' : 'James Bond',
23 'age' : '32',
24 'job' : 'agent',
25 'address' : 'London',
26 }

The data to be stored is considered confidential information, therefore we can’t just put it on the Tangle as plaintext
so everyone can read it. Think of what would happen if the world’s most famous secret agent’s identity was leaked on
the Tangle. . .

28 # Convert to JSON format
29 json_data = json.dumps(data)

Notice, that data is a Python dict object. As a common way of exchanging data on the web, we would like
to convert it to JSON format. The json.dumps() method does exactly that, and the result is a JSON formatted
plaintext.

31 # Ask user for a password to use for encryption
32 password = getpass('Please supply a password for encryption:')
33

34 print('Encrypting data...')
35 # Encrypt data
36 # Note, that in Python 3, encrypt returns 'bytes'
37 cipher = encrypt(password, json_data)
38

39 # Encode to base64, output contains only ASCII chars
40 b64_cipher = b64encode(cipher)

Next, we will encrypt this data with a secret password we obtain from the user.

Note: When you run this example, please remember the password at least until the next tutorial!

The output of the encrypt method is a bytes object in Python3 and contains many special characters. This is a
problem, since we can only convert ASCII characters from bytes directly into TryteString.

Therefore, we first encode our binary data into ASCII characters with Base64 encoding.

42 print('Constructing transaction locally...')
43 # Convert to trytes
44 trytes_encrypted_data = TryteString.from_bytes(b64_cipher)
45

46 # Generate an address from your seed to post the transfer to
47 my_address = api.get_new_addresses(index=42)['addresses'][0]
48

49 # Tag is optional here
50 my_tag = Tag(b'CONFIDENTIALINFORMATION')
51

52 # Prepare a transaction object
53 tx = ProposedTransaction(
54 address=my_address,
55 value=0,
56 tag=my_tag,
57 message=trytes_encrypted_data,
58)

138 Chapter 12. Tutorials

https://en.wikipedia.org/wiki/Base64

PyOTA Documentation

Now, we are ready to construct the transfer. We convert the encrypted Base64 encoded data to trytes and assign it to
the ProposedTransaction object’s message argument.

An address is also needed, so we generate one with the help of get_new_addresses() extended API method.
Feel free to choose the index of the generated address, and don’t forget, that the method returns a dict with a list of
addresses, even if it contains only one. For more detailed explanation on how addresses are generated in PyOTA, refer
to the adresses:Generating Addresses page.

We also attach a custom Tag to our ProposedTransaction. Note, that if our trytes_encrypted_datawas
longer than the maximum payload of a transaction, the library would split it accross more transactions that together
form the transfer bundle.

60 print('Sending transfer...')
61 # Send the transaction to the network
62 response = api.send_transfer([tx])
63

64 print('Check your transaction on the Tangle!')
65 print('https://utils.iota.org/transaction/%s/devnet' % response['bundle'][0].hash)
66 print('Tail transaction hash of the bundle is: %s' % response['bundle'].tail_

→˓transaction.hash)

Finally, we use Iota.send_transfer() to prepare the transfer and send it to the network.

Click on the link to check your transaction on the Tangle Explorer.

The tail transaction (a tail transaction is the one with index 0 in the bundle) hash is printed on the console, because
you will need it in the next tutorial, and anyway, it is a good practice to keep a reference to your transfers.

In the next example, we will try to decode the confidential information from the Tangle.

12.9 7. Fetch Encrypted Data

In this example, you will learn how to:

• Fetch bundles from the Tangle based on their tail transaction hashes.

• Extract messages from a bundle.

• Decrypt encrypted messages from a bundle.

Warning: We will use the simple-crypt external library for encryption/decryption. Before proceeding to the
tutorial, make sure you install it by running:

pip install simple-crypt

12.9.1 Code

1 """
2 Decrypt data fetched from the Tangle.
3

4 simplecrypt library is needed for this example (`pip install simple-crypt`)!
5 """
6 from iota import Iota
7 from simplecrypt import decrypt

(continues on next page)

12.9. 7. Fetch Encrypted Data 139

https://en.wikipedia.org/wiki/Base64

PyOTA Documentation

(continued from previous page)

8 from base64 import b64decode
9 from getpass import getpass

10

11 import json
12

13 # Declare an API object
14 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)
15

16 # Prompt user for tail tx hash of the bundle
17 tail_hash = input('Tail transaction hash of the bundle: ')
18

19 print('Looking for bundle on the Tangle...')
20 # Fetch bundle
21 bundle = api.get_bundles([tail_hash])['bundles'][0]
22

23 print('Extracting data from bundle...')
24 # Get all messages from the bundle and concatenate them
25 b64_encrypted_data = "".join(bundle.get_messages())
26

27 # Decode from base64
28 encrypted_data = b64decode(b64_encrypted_data)
29

30 # Prompt for passwword
31 password = getpass('Password to be used for decryption:')
32

33 print('Decrypting data...')
34 # Decrypt data
35 # decrypt returns 'bytes' in Python 3, decode it into string
36 json_data = decrypt(password, encrypted_data).decode('utf-8')
37

38 # Convert JSON string to python dict object
39 data = json.loads(json_data)
40

41 print('Succesfully decrypted the following data:')
42 print(data)

12.9.2 Discussion

1 """
2 Decrypt data fetched from the Tangle.
3

4 simplecrypt library is needed for this example (`pip install simple-crypt`)!
5 """
6 from iota import Iota
7 from simplecrypt import decrypt
8 from base64 import b64decode
9 from getpass import getpass

10

11 import json
12

13 # Declare an API object
14 api = Iota('https://nodes.devnet.iota.org:443', devnet=True)

In contrast to 6. Store Encrypted Data where we intended to encrypt data, in this tutorial we will do the reverse,
and decrypt data from the Tangle. Therefore, we need the decrypt method from simplecrypt library and the

140 Chapter 12. Tutorials

PyOTA Documentation

b64decode method from base64 library.

Furthermore, getpass is needed to prompt the user for a decryption password, and json for deserializing JSON
formatted string into Python object.

16 # Prompt user for tail tx hash of the bundle
17 tail_hash = input('Tail transaction hash of the bundle: ')

To fetch transactions or bundles from the Tangle, a reference is required to retreive them from the network. Transac-
tions are identified by their transaction hash, while a group of transaction (a bundle) by bundle hash. Hashes ensure
the integrity of the Tangle, since they contain verifiable information about the content of the transfer objects.

input() asks the user to give the tail transaction hash of the bundle that holds the encrypted messages. The tail
transaction is the first in the bundle with index 0. Copy and paste the tail transaction hash from the console output of
6. Store Encrypted Data when prompted.

19 print('Looking for bundle on the Tangle...')
20 # Fetch bundle
21 bundle = api.get_bundles([tail_hash])['bundles'][0]

Next, we fetch the bundle from the Tangle with the help of the get_bundles() extended API command. It takes a
list of tail transaction hashes and returns the bundles for each of them. The response dict contains a bundles key
with the value being a list of bundles in the same order as the input argument hashes. Also note, that the bundles in
the response are actual PyOTA Bundle objects.

To simplify the code, several operations are happening on line 21:

• Calling get_bundles() that returns a dict,

• accessing the 'bundles' key in the dict,

• and taking the first element of the the list of bundles in the value associated with the key.

23 print('Extracting data from bundle...')
24 # Get all messages from the bundle and concatenate them
25 b64_encrypted_data = "".join(bundle.get_messages())
26

27 # Decode from base64
28 encrypted_data = b64decode(b64_encrypted_data)
29

30 # Prompt for passwword
31 password = getpass('Password to be used for decryption:')
32

33 print('Decrypting data...')
34 # Decrypt data
35 # decrypt returns 'bytes' in Python 3, decode it into string
36 json_data = decrypt(password, encrypted_data).decode('utf-8')
37

38 # Convert JSON string to python dict object
39 data = json.loads(json_data)

The next step is to extract the content of the message fields of the transactions in the bundle. We call Bundle.
get_messages() to carry out this operation. The method returns a list of unicode strings, essentially the
signature_message_fragment fields of the transactions, decoded from trytes into unicode characters.

We then combine these message chunks into one stream of characters by using string.join().

We know that at this stage that we can’t make sense of our message, because it is encrypted and encoded into Base64.
Let’s peel that onion layer by layer:

• On line 28, we decode the message into bytes with b64decode.

12.9. 7. Fetch Encrypted Data 141

https://en.wikipedia.org/wiki/Base64

PyOTA Documentation

• On line 31, we ask the user for thr decryption password (from the previous tutorial).

• On line 36, we decrypt the bytes cipher with the password and decode the result into a unicode string.

• Since we used JSON formatting in the previous tutorial, there is one additional step to arrive at our original data.
On line 39, we deserialize the JSON string into a Python object, namely a dict.

41 print('Succesfully decrypted the following data:')
42 print(data)

If everything went according to plan and the user supplied the right password, we should see our original data printed
out to the console.

Now you know how to use the Tangle for data storage while keeping privacy. When you need more granular access
control on how and when one could read data from the Tangle, consider using Masked Authenticated Messaging
(MAM).

12.10 8. Send and Monitor Concurrently

In this example, you will learn how to:

• Use the asynchronous PyOTA API.

• Send transactions concurrently.

• Monitor confirmation of transactions concurrently.

• Execute arbitrary code concurrently while doing the former two.

Warning: If you are new to coroutines and asynchronous programming in Python, it is strongly recommended
that you check out this article and the official asyncio documentation before proceeding.

12.10.1 Code

1 from iota import AsyncIota, ProposedTransaction, Address, TryteString
2 from typing import List
3 import asyncio
4

5 # Asynchronous API instance.
6 api = AsyncIota(
7 adapter='https://nodes.devnet.iota.org:443',
8 devnet=True,
9)

10

11 # An arbitrary address to send zero-value transactions to.
12 addy = Address(

→˓'PZITJTHCIIANKQWEBWXUPHWPWVNBKW9GMNALMGGSIAUOYCKNWDLUUIGAVMJYCHZXHUBRIVPLFZHUVDLME')
13

14 # Timeout after which confirmation monitoring stops (seconds).
15 timeout = 120
16 # How often should we poll for confirmation? (seconds)
17 polling_interval = 5
18

19

(continues on next page)

142 Chapter 12. Tutorials

https://docs.iota.org/docs/client-libraries/0.1/mam/introduction/overview?q=masked%20auth&highlights=author;authent
https://docs.python.org/3/glossary.html#term-coroutine
https://realpython.com/async-io-python/
https://docs.python.org/3/library/asyncio.html

PyOTA Documentation

(continued from previous page)

20 async def send_and_monitor(
21 transactions: List[ProposedTransaction]
22) -> bool:
23 """
24 Send a list of transactions as a bundle and monitor their confirmation
25 by the network.
26 """
27 print('Sending bundle...')
28 st_response = await api.send_transfer(transactions)
29

30 sent_tx_hashes = [tx.hash for tx in st_response['bundle']]
31

32 print('Sent bundle with transactions: ')
33 print(*sent_tx_hashes, sep='\n')
34

35 # Measure elapsed time
36 elapsed = 0
37

38 print('Checking confirmation...')
39 while len(sent_tx_hashes) > 0:
40 # Determine if transactions are confirmed
41 gis_response = await api.get_inclusion_states(sent_tx_hashes, None)
42

43 for i, (tx, is_confirmed) in enumerate(zip(sent_tx_hashes, gis_response[
→˓'states'])):

44 if is_confirmed:
45 print('Transaction %s is confirmed.' % tx)
46 # No need to check for this any more
47 del sent_tx_hashes[i]
48 del gis_response['states'][i]
49

50 if len(sent_tx_hashes) > 0:
51 if timeout <= elapsed:
52 # timeout reached, terminate checking
53 return False
54 # Show some progress on the screen
55 print('.')
56 # Put on hold for polling_interval. Non-blocking, so you can
57 # do other stuff in the meantime.
58 await asyncio.sleep(polling_interval)
59 elapsed = elapsed + polling_interval
60

61 # All transactions in the bundle are confirmed
62 return True
63

64

65 async def do_something() -> None:
66 """
67 While waiting for confirmation, you can execute arbitrary code here.
68 """
69 for _ in range(5):
70 print('Doing something in the meantime...')
71 await asyncio.sleep(2)
72

73

74 async def main() -> None:
75 """

(continues on next page)

12.10. 8. Send and Monitor Concurrently 143

PyOTA Documentation

(continued from previous page)

76 A simple application that sends zero-value transactions to the Tangle and
77 monitors the confirmation by the network. While waiting for the
78 confirmation, we schedule a task (`do_something()`) to be executed concurrently.
79 """
80 # Transactions to be sent.
81 transactions = [
82 ProposedTransaction(
83 address=addy,
84 value=0,
85 message=TryteString.from_unicode('First'),
86),
87 ProposedTransaction(
88 address=addy,
89 value=0,
90 message=TryteString.from_unicode('Second'),
91),
92 ProposedTransaction(
93 address=addy,
94 value=0,
95 message=TryteString.from_unicode('Third'),
96),
97]
98

99 # Schedule coroutines as tasks, wait for them to finish and gather their
100 # results.
101 result = await asyncio.gather(
102 send_and_monitor(transactions),
103 # Send the same content. Bundle will be different!
104 send_and_monitor(transactions),
105 do_something(),
106)
107

108 if not (result[0] and result[1]):
109 print('Transactions did not confirm after %s seconds!' % timeout)
110 else:
111 print('All transactions are confirmed!')
112

113 if __name__ == '__main__':
114 # Execute main() inside an event loop if the file is ran
115 asyncio.run(main())

12.10.2 Discussion

This example is divided into 4 logical parts:

1. Imports and constant declarations

2. Coroutine to send and monitor a list of transactions as a bundle.

3. Coroutine to execute arbitrary code concurrently.

4. A main coroutine to schedule the execution of our application.

Let’s start with the most simple one: Imports and Constants.

1 from iota import AsyncIota, ProposedTransaction, Address, TryteString
2 from typing import List

(continues on next page)

144 Chapter 12. Tutorials

https://docs.python.org/3/glossary.html#term-coroutine
https://docs.python.org/3/glossary.html#term-coroutine
https://docs.python.org/3/glossary.html#term-coroutine

PyOTA Documentation

(continued from previous page)

3 import asyncio
4

5 # Asynchronous API instance.
6 api = AsyncIota(
7 adapter='https://nodes.devnet.iota.org:443',
8 devnet=True,
9)

10

11 # An arbitrary address to send zero-value transactions to.
12 addy = Address(

→˓'PZITJTHCIIANKQWEBWXUPHWPWVNBKW9GMNALMGGSIAUOYCKNWDLUUIGAVMJYCHZXHUBRIVPLFZHUVDLME')
13

14 # Timeout after which confirmation monitoring stops (seconds).
15 timeout = 120
16 # How often should we poll for confirmation? (seconds)
17 polling_interval = 5

Notice, that we import the AsyncIota api class, because we would like to use the asynchronous and concurrent
features of PyOTA. List from the typing library is needed for correct type annotations, and we also import the
asyncio library. This will come in handy when we want to schedule and run the coroutines.

On line 6, we instantiate an asynchronous IOTA api. Functionally, it does the same operations as Iota, but the api
calls are defined as coroutines. For this tutorial, we connect to a devnet node, and explicitly tell this as well to the api
on line 8.

On line 12, we declare an IOTA address. We will send our zero value transactions to this address. Feel free to change
it to your own address.

Once we have sent the transactions, we start monitoring their confirmation by the network. Confirmation time depends
on current network activity, the referenced tips, etc., therefore we set a timeout of 120 seconds on line 15. You might
have to modify this value later to see the confirmation of your transactions.

You can also fine-tune the example code by tinkering with polling_interval. This is the interval between two
subsequent confirmation checks.

Let’s move on to the next block, namely the send and monitor coroutine.

20 async def send_and_monitor(
21 transactions: List[ProposedTransaction]
22) -> bool:
23 """
24 Send a list of transactions as a bundle and monitor their confirmation
25 by the network.
26 """
27 print('Sending bundle...')
28 st_response = await api.send_transfer(transactions)
29

30 sent_tx_hashes = [tx.hash for tx in st_response['bundle']]
31

32 print('Sent bundle with transactions: ')
33 print(*sent_tx_hashes, sep='\n')
34

35 # Measure elapsed time
36 elapsed = 0
37

38 print('Checking confirmation...')
39 while len(sent_tx_hashes) > 0:
40 # Determine if transactions are confirmed

(continues on next page)

12.10. 8. Send and Monitor Concurrently 145

https://docs.python.org/3/library/asyncio.html

PyOTA Documentation

(continued from previous page)

41 gis_response = await api.get_inclusion_states(sent_tx_hashes, None)
42

43 for i, (tx, is_confirmed) in enumerate(zip(sent_tx_hashes, gis_response[
→˓'states'])):

44 if is_confirmed:
45 print('Transaction %s is confirmed.' % tx)
46 # No need to check for this any more
47 del sent_tx_hashes[i]
48 del gis_response['states'][i]
49

50 if len(sent_tx_hashes) > 0:
51 if timeout <= elapsed:
52 # timeout reached, terminate checking
53 return False
54 # Show some progress on the screen
55 print('.')
56 # Put on hold for polling_interval. Non-blocking, so you can
57 # do other stuff in the meantime.
58 await asyncio.sleep(polling_interval)
59 elapsed = elapsed + polling_interval
60

61 # All transactions in the bundle are confirmed
62 return True

Notice, that coroutines are defined in python by the async def keywords. This makes them awaitable.

From the type annotations, we see that send_and_monitor() accepts a list of ProposedTransaction objects
and return a bool.

On line 28, we send the transfers with the help of AsyncIota.send_transfer(). Since this is not a regular
method, but a coroutine, we have to await its result. AsyncIota.send_transfer() takes care of building the
bundle, doing proof-of-work and sending the transactions within the bundle to the network.

Once we sent the transfer, we collect individual transaction hashes from the bundle, which we will use for confirmation
checking.

On line 39, the so-called confirmation checking starts. With the help of AsyncIota.
get_inclusion_states(), we determine if our transactions have been confirmed by the network.

Note: You might wonder how your transactions get accepted by the network, that is, how they become confirmed.

• Pre-Coordicide (current state), transactions are confirmed by directly or indirectly being referenced by a mile-
stone. A milestone is a special transaction issued by the Coordinator.

• Post-Coordicide , confirmation is the result of nodes reaching consensus by a voting mechanism.

The None value for the tips parameter in the argument list basically means that we check against the latest milestone.

On line 43, we iterate over our original sent_tx_hashes list of sent transaction hashes and
gis_response['states'], which is a list of bool values, at the same time using the built-in zip method.
We also employ enumerate, because we need the index of the elements in each iteration.

If a transaction is confirmed, we delete the corresponding elements from the lists. When all transactions are confirmed,
sent_tx_hashes becomes empty, and the loop condition becomes False.

If however, not all transactions have been confirmed, we should continue checking for confirmation. Observe line 58,
where we suspend the coroutine with asyncio.sleep() for polling_interval seconds. Awaiting the result

146 Chapter 12. Tutorials

https://docs.python.org/3/library/asyncio-task.html#awaitables
https://coordicide.iota.org/
https://docs.iota.org/docs/getting-started/0.1/network/the-coordinator#milestones
https://docs.iota.org/docs/getting-started/0.1/network/the-coordinator#milestones
https://docs.iota.org/docs/getting-started/0.1/network/the-coordinator
https://coordicide.iota.org/
https://coordicide.iota.org/module4.1
https://docs.python.org/3.3/library/functions.html#zip
https://docs.python.org/3.3/library/functions.html#enumerate

PyOTA Documentation

of asyncio.sleep() will cause our coroutine to continue execution in polling_interval time. While our
coroutine is sleeping, other coroutines can run concurrently, hence it is a non-blocking call.

To do something in the meantime, we can execute another coroutine concurrently:

65 async def do_something() -> None:
66 """
67 While waiting for confirmation, you can execute arbitrary code here.
68 """
69 for _ in range(5):
70 print('Doing something in the meantime...')
71 await asyncio.sleep(2)

This is really just a dummy coroutine that prints something to the terminal and then goes to sleep periodically, but in
a real application, you could do meaningful tasks here.

Now let’s look at how to schedule the execution of our application with the main coroutine:

74 async def main() -> None:
75 """
76 A simple application that sends zero-value transactions to the Tangle and
77 monitors the confirmation by the network. While waiting for the
78 confirmation, we schedule a task (`do_something()`) to be executed concurrently.
79 """
80 # Transactions to be sent.
81 transactions = [
82 ProposedTransaction(
83 address=addy,
84 value=0,
85 message=TryteString.from_unicode('First'),
86),
87 ProposedTransaction(
88 address=addy,
89 value=0,
90 message=TryteString.from_unicode('Second'),
91),
92 ProposedTransaction(
93 address=addy,
94 value=0,
95 message=TryteString.from_unicode('Third'),
96),
97]
98

99 # Schedule coroutines as tasks, wait for them to finish and gather their
100 # results.
101 result = await asyncio.gather(
102 send_and_monitor(transactions),
103 # Send the same content. Bundle will be different!
104 send_and_monitor(transactions),
105 do_something(),
106)
107

108 if not (result[0] and result[1]):
109 print('Transactions did not confirm after %s seconds!' % timeout)
110 else:
111 print('All transactions are confirmed!')
112

113 if __name__ == '__main__':
114 # Execute main() inside an event loop if the file is ran

(continues on next page)

12.10. 8. Send and Monitor Concurrently 147

PyOTA Documentation

(continued from previous page)

115 asyncio.run(main())

First, we declare a list of ProposedTransaction() objects, that will be the input for our
send_and_monitor() coroutine.

The important stuff begins on line 101. We use asyncio.gather() to submit our coroutines for execution, wait
for their results and then return them in a list. gather takes our coroutines, transforms them into runnable tasks, and
runs them concurrently.

Notice, that we listed send_and_monitor() twice in asyncio.gather() with the same list of
ProposedTransaction() objects. This is to showcase how you can send and monitor multiple transfers concur-
rently. In this example, two different bundles will be created from the same ProposedTransaction() objects.
The two bundles post zero value transactions to the same address, contain the same messages respectively, but are not
dependent on each other in any way. That is why we can send them concurrently.

As discussed previously, result will be a list of results of the coroutines submitted to asyncio.gather(),
preserving their order. result[0] is the result from the first send_and_monitor(), and result[1] is the
result from the second send_and_monitor() from the argument list. If any of these are False, confirmation did
not happen before timeout.

When you see the message from line 109 in your terminal, try increasing timeout, or check the status of the network,
maybe there is a temporary downtime on the devnet due to maintenance.

Lastly, observe lines 113-115. If the current file (python module) is run from the terminal, we use ayncio.run()
to execute the main coroutine inside an event loop.

To run this example, navigate to examples/tutorial inside the cloned PyOTA repository, or download the source
file of Tutorial 8 from GitHub and run the following in a terminal:

$ python 08_async_send_monitor.py

148 Chapter 12. Tutorials

https://docs.python.org/3/library/asyncio-task.html#running-tasks-concurrently
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/asyncio-eventloop.html
https://github.com/iotaledger/iota.py/blob/master/examples/tutorials/08_async_send_monitor.py
https://travis-ci.org/iotaledger/iota.py
http://pyota.readthedocs.io/en/latest/?badge=latest

CHAPTER

THIRTEEN

PYOTA

This is the official Python library for the IOTA Core.

It implements both the official API, as well as newly-proposed functionality (such as signing, bundles, utilities and
conversion).

13.1 Join the Discussion

If you want to get involved in the community, need help with getting setup, have any issues related with the library or
just want to discuss Blockchain, Distributed Ledgers and IoT with other people, feel free to join our Discord.

If you encounter any issues while using PyOTA, please report them using the PyOTA Bug Tracker.

149

https://docs.iota.org/docs/node-software/0.1/iri/references/api-reference
https://discord.iota.org/
https://github.com/iotaledger/iota.py/issues

PyOTA Documentation

150 Chapter 13. PyOTA

CHAPTER

FOURTEEN

DEPENDENCIES

PyOTA is compatible with Python 3.7 and 3.6.

151

PyOTA Documentation

152 Chapter 14. Dependencies

CHAPTER

FIFTEEN

INSTALL PYOTA

To install the latest version:

pip install pyota

15.1 Optional C Extension

PyOTA has an optional C extension that improves the performance of its cryptography features significantly (speedups
of 60x are common!).

To install this extension, use the following command:

pip install pyota[ccurl]

15.2 Optional Local Pow

To perform proof-of-work locally without relying on a node, you can install an extension module called PyOTA-PoW
.

Specifiy the local_pow=True argument when creating an api instance, that will redirect all attach_to_tangle
API calls to an interface function in the pow package.

To install this extension, use the following command:

pip install pyota[pow]

Alternativley you can take a look on the repository Ccurl.interface.py to install Pyota-PoW. Follow the steps depicted
in the repo’s README file.

15.3 Installing from Source

1. Create virtualenv (recommended, but not required).

2. git clone https://github.com/iotaledger/iota.py.git

3. pip install -e .

153

https://pypi.org/project/PyOTA-PoW/
https://github.com/iotaledger/ccurl.interface.py
https://realpython.com/blog/python/python-virtual-environments-a-primer/

PyOTA Documentation

15.3.1 Running Unit Tests

To run unit tests after installing from source:

python setup.py test

PyOTA is also compatible with tox, which will run the unit tests in different virtual environments (one for each
supported version of Python).

To run the unit tests, it is recommended that you use the -p argument. This speeds up the tests by running them in
parallel.

Install PyOTA with the test-runner extra to set up the necessary dependencies, and then you can run the tests
with the tox command:

pip install -e .[test-runner]
tox -v -p all

154 Chapter 15. Install PyOTA

https://tox.readthedocs.io/

CHAPTER

SIXTEEN

DOCUMENTATION

PyOTA’s documentation is available on ReadTheDocs.

If you are installing from source (see above), you can also build the documentation locally:

1. Install extra dependencies (you only have to do this once):

pip install .[docs-builder]

Tip: To install the CCurl extension and the documentation builder tools together, use the following command:

pip install .[ccurl,docs-builder]

2. Switch to the docs directory:

cd docs

3. Build the documentation:

make html

155

https://pyota.readthedocs.io/

PyOTA Documentation

156 Chapter 16. Documentation

PYTHON MODULE INDEX

i
iota, 45
iota.adapter, 37

157

PyOTA Documentation

158 Python Module Index

INDEX

A
AdapterSpec (in module iota.adapter), 37
add_checksum() (iota.Address method), 19
add_inputs() (iota.multisig.transaction.ProposedMultisigBundle

method), 111
add_inputs() (iota.ProposedBundle method), 32
add_neighbors() (iota.AsyncIota method), 50
add_neighbors() (iota.Iota method), 49
add_route() (iota.adapter.wrappers.RoutingWrapper

method), 42
add_signature_or_message()

(iota.ProposedBundle method), 33
add_transaction() (iota.ProposedBundle method),

32
Address (class in iota), 16
address (iota.Address attribute), 17
address (iota.Transaction attribute), 22
AddressChecksum (class in iota), 20
AddressGenerator (class in iota.crypto.addresses),

94
AddressNoChecksum (class in iota.filters), 119
as_integers() (iota.TryteString method), 14
as_json_compatible() (iota.Address method), 17
as_json_compatible() (iota.Bundle method), 30
as_json_compatible()

(iota.multisig.types.MultisigAddress method),
110

as_json_compatible() (iota.ProposedBundle
method), 35

as_json_compatible() (iota.Transaction method),
25

as_json_compatible() (iota.TryteString method),
14

as_trits() (iota.TryteString method), 15
as_tryte_string() (iota.ProposedTransaction

method), 29
as_tryte_string() (iota.Transaction method), 26
as_tryte_strings() (iota.Bundle method), 30
as_trytes() (iota.TryteString method), 14
AsyncIota (class in iota), 48
AsyncMultisigIota (class in iota.multisig), 104
AsyncStrictIota (class in iota), 46

attach_to_tangle() (iota.AsyncIota method), 51
attach_to_tangle() (iota.Iota method), 50
attachment_timestamp (iota.Transaction at-

tribute), 23
attachment_timestamp_as_trytes()

(iota.Transaction property), 23
attachment_timestamp_lower_bound

(iota.Transaction attribute), 23
attachment_timestamp_lower_bound_as_trytes()

(iota.Transaction property), 23
attachment_timestamp_upper_bound

(iota.Transaction attribute), 23
attachment_timestamp_upper_bound_as_trytes()

(iota.Transaction property), 23

B
balance (iota.Address attribute), 17
balance() (iota.ProposedBundle property), 32
branch_transaction_hash (iota.Transaction at-

tribute), 23
broadcast_and_store() (iota.AsyncIota method),

67
broadcast_and_store() (iota.Iota method), 67
broadcast_bundle() (iota.AsyncIota method), 68
broadcast_bundle() (iota.Iota method), 68
broadcast_transactions() (iota.AsyncIota

method), 52
broadcast_transactions() (iota.Iota method),

51
Bundle (class in iota), 29
bundle_hash (iota.Transaction attribute), 23
BundleHash (class in iota), 20

C
check_consistency() (iota.AsyncIota method), 52
check_consistency() (iota.Iota method), 52
create_iterator()

(iota.crypto.addresses.AddressGenerator
method), 95

create_multisig_address()
(iota.multisig.AsyncMultisigIota method),
105

159

PyOTA Documentation

create_multisig_address()
(iota.multisig.MultisigIota method), 105

current_index (iota.Transaction attribute), 23
current_index_as_trytes() (iota.Transaction

property), 23

D
decode() (iota.TryteString method), 13

E
encode() (iota.TryteString method), 12

F
finalize() (iota.ProposedBundle method), 34
find_transaction_objects() (iota.AsyncIota

method), 69
find_transaction_objects() (iota.Iota

method), 69
find_transactions() (iota.AsyncIota method), 54
find_transactions() (iota.Iota method), 53
Fragment (class in iota), 21
from_bytes() (iota.TryteString class method), 10
from_trits() (iota.TryteString class method), 11
from_tryte_string() (iota.Transaction class

method), 26
from_tryte_strings() (iota.Bundle class

method), 30
from_trytes() (iota.TryteString class method), 12
from_unicode() (iota.TryteString class method), 11

G
GeneratedAddress (class in iota.filters), 119
get_account_data() (iota.AsyncIota method), 71
get_account_data() (iota.Iota method), 70
get_addresses() (iota.crypto.addresses.AddressGenerator

method), 94
get_balances() (iota.AsyncIota method), 55
get_balances() (iota.Iota method), 54
get_bundle_essence_trytes()

(iota.Transaction method), 27
get_bundles() (iota.AsyncIota method), 72
get_bundles() (iota.Iota method), 72
get_digests() (iota.multisig.AsyncMultisigIota

method), 106
get_digests() (iota.multisig.MultisigIota method),

105
get_inclusion_states() (iota.AsyncIota

method), 56
get_inclusion_states() (iota.Iota method), 56
get_inputs() (iota.AsyncIota method), 74
get_inputs() (iota.Iota method), 73
get_messages() (iota.Bundle method), 31
get_missing_transactions() (iota.AsyncIota

method), 57

get_missing_transactions() (iota.Iota
method), 57

get_neighbors() (iota.AsyncIota method), 58
get_neighbors() (iota.Iota method), 57
get_new_addresses() (iota.AsyncIota method), 76
get_new_addresses() (iota.Iota method), 76
get_node_api_configuration()

(iota.AsyncIota method), 59
get_node_api_configuration() (iota.Iota

method), 58
get_node_info() (iota.AsyncIota method), 60
get_node_info() (iota.Iota method), 59
get_private_keys()

(iota.multisig.AsyncMultisigIota method),
107

get_private_keys() (iota.multisig.MultisigIota
method), 106

get_transaction_objects() (iota.AsyncIota
method), 77

get_transaction_objects() (iota.Iota method),
77

get_transactions_to_approve()
(iota.AsyncIota method), 62

get_transactions_to_approve() (iota.Iota
method), 61

get_transfers() (iota.AsyncIota method), 79
get_transfers() (iota.Iota method), 78
get_trytes() (iota.AsyncIota method), 62
get_trytes() (iota.Iota method), 62
group_transactions() (iota.Bundle method), 31

H
Hash (class in iota), 20
hash (iota.Transaction attribute), 23
hash() (iota.Bundle property), 29
HttpAdapter (class in iota), 38

I
increment_legacy_tag()

(iota.ProposedTransaction method), 29
interrupt_attaching_to_tangle()

(iota.AsyncIota method), 63
interrupt_attaching_to_tangle() (iota.Iota

method), 63
Iota (class in iota), 47
iota (module), 45
iota.adapter (module), 37
is_checksum_valid() (iota.Address method), 18
is_confirmed (iota.Transaction attribute), 24
is_confirmed() (iota.AsyncIota method), 80
is_confirmed() (iota.Bundle property), 29
is_confirmed() (iota.Iota method), 79
is_promotable() (iota.AsyncIota method), 81
is_promotable() (iota.Iota method), 80

160 Index

PyOTA Documentation

is_reattachable() (iota.AsyncIota method), 81
is_reattachable() (iota.Iota method), 81
is_tail() (iota.Transaction property), 24

K
key_index (iota.Address attribute), 17

L
last_index (iota.Transaction attribute), 24
last_index_as_trytes() (iota.Transaction prop-

erty), 24
legacy_tag() (iota.Transaction property), 24
LEN (iota.AddressChecksum attribute), 20
LEN (iota.Fragment attribute), 21
LEN (iota.Hash attribute), 20
LEN (iota.Nonce attribute), 21
LEN (iota.Tag attribute), 21
LEN (iota.TransactionTrytes attribute), 20

M
MockAdapter (class in iota), 40
MultisigAddress (class in iota.multisig.types), 110
MultisigIota (class in iota.multisig), 103

N
NodeUri (class in iota.filters), 119
Nonce (class in iota), 21
nonce (iota.Transaction attribute), 24

P
prepare_multisig_transfer()

(iota.multisig.AsyncMultisigIota method),
108

prepare_multisig_transfer()
(iota.multisig.MultisigIota method), 107

prepare_transfer() (iota.AsyncIota method), 83
prepare_transfer() (iota.Iota method), 82
promote_transaction() (iota.AsyncIota method),

84
promote_transaction() (iota.Iota method), 84
ProposedBundle (class in iota), 31
ProposedMultisigBundle (class in

iota.multisig.transaction), 111
ProposedTransaction (class in iota), 28

R
random() (iota.Seed class method), 16
random() (iota.TryteString class method), 15
remove_checksum() (iota.Address method), 19
remove_neighbors() (iota.AsyncIota method), 64
remove_neighbors() (iota.Iota method), 64
replay_bundle() (iota.AsyncIota method), 85
replay_bundle() (iota.Iota method), 85

RoutingWrapper (class in iota.adapter.wrappers), 42

S
SCHEMES (iota.filters.NodeUri attribute), 119
security_level (iota.Address attribute), 17
SecurityLevel() (iota.filters method), 120
Seed (class in iota), 16
seed_response() (iota.MockAdapter method), 41
send_transfer() (iota.AsyncIota method), 86
send_transfer() (iota.Iota method), 86
send_trytes() (iota.AsyncIota method), 88
send_trytes() (iota.Iota method), 87
send_unspent_inputs_to()

(iota.ProposedBundle method), 33
set_local_pow() (iota.AsyncIota method), 48
set_local_pow() (iota.AsyncStrictIota method), 47
set_local_pow() (iota.Iota method), 47
set_local_pow() (iota.StrictIota method), 46
sign_input_at() (iota.ProposedBundle method), 34
sign_inputs() (iota.ProposedBundle method), 34
signature_message_fragment (iota.Transaction

attribute), 24
store_transactions() (iota.AsyncIota method),

65
store_transactions() (iota.Iota method), 64
StrictIota (class in iota), 46
StringifiedTrytesArray() (iota.filters method),

119

T
Tag (class in iota), 21
tag (iota.Transaction attribute), 24
tag() (iota.ProposedBundle property), 32
tail_transaction() (iota.Bundle property), 30
timestamp (iota.Transaction attribute), 24
timestamp_as_trytes() (iota.Transaction prop-

erty), 25
Transaction (class in iota), 21
TransactionHash (class in iota), 20
transactions (iota.Bundle attribute), 30
TransactionTrytes (class in iota), 20
traverse_bundle() (iota.AsyncIota method), 88
traverse_bundle() (iota.Iota method), 88
trunk_transaction_hash (iota.Transaction at-

tribute), 25
Trytes (class in iota.filters), 118
TryteString (class in iota), 9

V
value (iota.Transaction attribute), 25
value_as_trytes() (iota.Transaction property), 25

Index 161

PyOTA Documentation

W
were_addresses_spent_from() (iota.AsyncIota

method), 65
were_addresses_spent_from() (iota.Iota

method), 65
with_valid_checksum() (iota.Address method),

18

162 Index

	Getting Started
	Basic Concepts
	PyOTA Types
	Adapters and Wrappers
	PyOTA API Classes
	Core API Methods
	Extended API Methods
	Generating Addresses
	Creating transfers
	Multisignature
	Advanced: PyOTA Commands
	Tutorials
	PyOTA
	Dependencies
	Install PyOTA
	Documentation
	Python Module Index
	Index

